would like to ask if there are any articles, references, etc, which reference procedures to determine the maturity of the concrete applied via shotcrete? Basically, how to generate the validation curves?

Shotcrete is a placement method for concrete. Thus, generating the maturity curves would be based on the concrete mixtures. There are several online resources about the maturity method. One that discusses production of the curves is from the Minnesota DOT and available in PDF format at  www.dot.state.mn.us/materials/concretedocs/MaturityMethodProcedure.pdf. 

I have a 24 in (600 mm) thick shotcrete wall that will have to be scanned for voids. The project has been struggling to locate a local expert who has the capability to scan this thick of a wall. In addition, this new 24 in thick shotcrete wall was dowelled and made “as one unit” together with an existing 24 inches thick cast in place wall. What technique should I use to get the right proportion?

Shotcrete is a placement method for concrete. Thus, all non-destructive testing (NDT) applicable to concrete walls would be usable on your wall. However, it is difficult to get good results with a scanning system for heavily reinforced concrete walls of your thickness. Impact Echo and Impulse Response are two one-sided techniques that can provide good results for a portion of the 24 in thickness though would likely not be able to scan the entire depth. Ultrasonic Pulse Velocity is a potential if you can access both sides of the wall. For one-sided investigation at greater depth you may be able to use a MIRA system. It is sophisticated tomographic system that says it can test from 50mm to 800mm (32 in) thickness. There are national consulting firms that provide these investigation systems. Each requires a highly trained, experienced operator so be sure to verify the firm can document successful experience with the method.

Can shotcrete be considered as structural concrete with wire mesh and rockbolts in tunnel linings?

Shotcrete is a placement method for concrete. It is routinely used for a wide variety of structural applications. It has been used for both initial and final linings in tunnels where it is commonly reinforced with wire mesh, fibers, or reinforcing steel. You may want to review our past Shotcrete magazine articles on tunnel shotcrete at https://shotcrete.org/archive-search/
using keywords such as “tunnel,” “underground,” and “linings.” Also, we have two position papers from our underground committee: “Spraying Shotcrete Overhead in Underground Applications,” and “Spraying Shotcrete on Synthetic Sheet Waterproofing Membranes,” that you may find informative. Also, ACI 506.5R-09, “Guide for Specifying Underground Shotcrete,” can provide insight into topics important for using and specifying underground shotcrete.

Do you have any reference documentation for the application of using concrete stamps/textures or hand carving on vertical shotcrete applications for architectural finishes?

Unfortunately, I’m not aware of any specific references to guide you in stamping or carving of fresh shotcrete for vertical surfaces. In many ways carving and stamping is a technique that requires more of an artistic flare that a finisher develops by hands-on experience. One key aspect is to minimize the working of the surface as much as possible to prevent tearing or delaminating the shotcrete surface layers. Carving or stamping when the concrete has reached an appropriate level of set (not too hard or soft) must also be judged by the experienced shotcrete finisher.

I live in a 10-story condo building built in the 1960s. The entire building is made of gunite. We use masonry drill bits for holes, but nothing seems to grip well. We have tried concrete screws, metal drywall anchors (which seem to work the best), and a plethora of other anchors and screws, but nothing seems to work. They all cause mushrooming and they either don’t grip or turn the wall to powder. What are the best tools to affix things to the walls?

Shotcrete is a placement method for concrete. Dry-mix shotcrete (the old tradename is gunite) using proper materials, equipment, and application techniques should have easily been able to reach a strength of 4000 psi (28 MPa) in the first month. After 10 years in-place the concrete should be even stronger. The level of concrete strength developed by quality shotcrete should easily accommodate drilling in anchors or concrete screws. In my experience it would have been highly unusual to build an entire 10-story building with shotcrete even in the 1960s. I’d suggest based on the extremely weak material properties and the wall turning to dust what you think is shotcrete may be sprayed plaster or stucco. Those materials don’t have near the same strength as shotcrete and would exhibit many of the problems you have mentioned.

I am not sure if this is the right place to go… 15 months ago I contracted with a company to remove my pavers, pour a concrete pad, and install spraycrete. It was beautiful! The contractor even has photos on his website. Now, I have hairline cracks all over the place and there are more weekly. My contractor is definitely giving me the runaround regarding this. I explained that I would not have paid more than $16,000 if my pool deck would be cracked a year later. Hurricane Irma took out my pool cage and the insurance money was not enough to replace it, so I used the money for my pool deck. Can someone please tell me what to do? Should these hairline cracks be everywhere? What is the lifespan of the material? Help!

Spray-crete is NOT shotcrete. Shotcrete is high-velocity placement of concrete in thicker structural sections. It appears Spray-crete is a low-velocity sprayed mortar product generally applied in a very thin layer to provide texture to an existing concrete substrate. Since you mentioned the underlaying concrete pad was cast and then the Spray-crete added the cracking could well be originating in the underlaying concrete. Concrete cracks for a variety of reasons, such as drying shrinkage, thermal volume change (summer/winter cycles), inadequate curing, insufficient reinforcing steel, or settlement of the subgrade. You should locate a local professional engineer experienced in concrete slab evaluation who can evaluate your site, materials used, application techniques, and potential causes of the cracking. You may find the Florida Engineering Society and ACEC-FL has a list of firms who offer evaluation services.

I’m hoping you’d be willing to answer a couple of questions I have about gunite. I am having a swimming pool installed at my house in Florida. I was away when the gunite was shot a few weeks ago and didn’t know at the time that the gunite should be sprayed with water for a few times a day for about a week according to what I have read online. The pool company owner knew I would be away and never mentioned the need for the gunite to be periodically moistened. The owner also made no provision for any of his employees to hose it down or install a sprinkler. When I learned after the fact of the watering requirement and asked him about it, he said it was unnecessary because the gunite was shot at 4000 psi (28 MPa) and not the “industry standard” of 3000 psi (21 MPa). Then he added that with the almost daily rain in Florida at this time of year, all was okay. I’m concerned about the gunite’s integrity—its permeability and the possibility of shrinkage and cracking. Could you tell me if I have a reason to be concerned, and if so, what do you suggest I should do about it?

Gunite is the original tradename for what we now call dry-mix shotcrete. Shotcrete is a placement method for concrete, so recommendations for curing and protection follow general ACI guidelines for exposed concrete. ASA recommends a minimum of 7 days of continuous (not just a few times a day) wet curing to help control shrinkage issues, increase strength, and reduce permeability in young concrete sections. Lack of curing and exposure to windy, hot, or dry conditions will certainly increase the potential for shrinkage and cracking of the concrete. Lack of curing will prevent the concrete from achieving its maximum potential strength.

Shotcrete placement with quality materials and proper application techniques generally exceeds the minimum 4000 psi 28-day compressive strength ASA recommends. The statement that 3000 psi is the “industry standard” is not true, as the ACI 350 Code for concrete liquid-containing requires a minimum 28-day compressive strength of 4000 psi for concrete intended to have low permeability when exposed to water. The required strength depends on the pool design. If you want to confirm the compressive strength of your in-place concrete, cores taken from the pool should be tested for compressive strength by a qualified testing lab. ASTM C1604/C1604M provides guidance on taking cores from existing structures. A minimum 3 in. (76 mm) diameter core is recommended. Before coring, it is recommended to use ground-penetrating radar (GPR) or similar equipment to identify the location of reinforcement in the pool section, and then take cores to avoid cutting through the reinforcement wherever possible. The core holes would then need to be filled with a high-strength, non-shrink cementitious grout. Once you learn the actual strength, you would need to check with the pool design engineer to verify the strength is adequate for the design. If the strengths are not adequate, you should consult with the pool designer or a licensed professional engineer experienced in pool design for potential solutions.

Regarding cracking, the lack of curing will increase the concrete’s shrinkage and correspondingly the potential for cracking. You should verify that there are no significant cracks in the pool shell before the plaster or other interior coating is applied. If there are cracks, the pool contractor should repair those before proceeding with the plaster or coating. Although proper curing would certainly decrease the concrete’s permeability, generally good-quality shotcrete with proper placement and a strength of 4000 psi will be functionally watertight and not allow any significant amount of water to flow through the uncracked concrete thickness. You will find more detailed information on pool compressive strengths and watertightness of pool shells in our ASA Position Statements.

I have a project where we are designing a shotcrete wall. The contractor plans to mix the shotcrete on site and we need to work with them to come up with a mixture design. Do you have any suggested wet-mix shotcrete designs for on-site mixing applications or could you point me where some may be published?

Shotcrete is simply a placement method for concrete. Most wet-mix shotcrete contractors use a 2 in. (50 mm) diameter delivery hose, so maximum coarse aggregate size should be limited to 3/8 in. (10 mm) nominal. Pumpability usually requires a good paste content. Here’s a link to an article, “Understanding Wet-Mix Shotcrete: Mix Design, Specifications, and Placement,” that should answer many of your questions. It is rare to have wet-mix concrete mixed on site from bulk aggregate and cementitious materials. Most site-batched wet-mix uses dry prepackaged materials that have metered water addition to provide a specific water-cementitious materials ratio (w/cm) for the provided bagged mixture. We also see volumetric mixers used on site that can precisely meter the dry concrete materials and water often with needed water-reducing air-entraining admixtures.

We are applying shotcrete in a slope (8 in. [200 m]) to make it stable. The shotcrete wall has a length of 330 ft (100 m). Do we need to specify construction and an isolation joint? In case it is required as well as an isolation joint, does the separation between joints need to be 30 ft (9 m)? Where can I find information about joints for shotcrete?

Shotcrete is a placement method for concrete. Thus, you should place movement joints (contraction, expansion, isolation) as would be required by your local design codes for concrete. Joint spacing will depend on the amount of reinforcement used in the section to resist temperature and shrinkage volume changes. Construction joint spacing can be determined by the contractor depending on their production rates. Properly prepared construction joints will act as monolithic concrete as long as the joints are properly prepared and proper concrete materials, equipment, and placement techniques are used by the shotcrete contractor. Construction joints should be roughened, cleaned, and then dampened to saturated surface-dry conditions before subsequent shotcrete placement.

The U.S. Bureau of Reclamation has a nice summary document that you may find helpful in your design.

I place shotcrete and I use the wet-mix method. I have been asked by a contractor to repair a pool that was shot with the dry-mix method. He is having trouble convincing his client that with the proper preparation we can shoot the repair with the wet method. Am I missing anything?

Shotcrete is a placement method for concrete. Both wet-mix and dry-mix produce quality in-place concrete when using quality materials and proper equipment and placement techniques. There are no compatibility problems with shooting wet-mix over dry-mix. Basically, it is just shooting shotcrete on top of already placed concrete. For proper bond, the surface of the existing dry-mix must be roughened, cleaned, and brought to a saturated surface-dry moisture condition before shooting the wet-mix lining.