I was taught in engineering courses that conventional concrete should not be counted on to carry tensile stress. For steel reinforced concrete, the reinforcing bar is designed to carry all tensile loads. Although concrete obviously has some tensile strength, it is too low and prone to cracking failure to consider it in design. In fact, I believe you can assume it is cracked from the shrinkage during curing. Is gunite treated the same way? I have a pool that is developing a crack through an elevated wall/beam and down into the plaster to the bottom floor at the sun shelf. I witnessed the plumbers cutting some rebar in the beam to allow for PVC plumbing to water sheer (up at top of beam, just under the tile topping) and I worry this is the root cause along with settlement that put the top of the beam in tension. The rebar down low should be intact and I hope the crack width may stay minor down in the plaster. On top of the tiles beam where the maximum tensile stress would have been, the crack is fairly wide. The crack movement opened up a gap in the grout line between tiles of about 0.08 to 0.10 in. (2-2.5 mm). I think it was a real sin for them to have cut the rebar. If it is necessary to reinforce the tensile side to halt future movement, I would think cutting a slot or two in the gunite across the crack (say 12 in. [300 mm] each side. Up high just under the water sheer) and epoxy a rebar in the slots.

Shotcrete, both dry-mix (gunite) and wet-mix are a placement method for concrete. Wet-mix uses premixed concrete while dry-mix simply adds water to the concrete materials at the nozzle. Both dry-mix and wet-mix with proper materials, equipment, and placement with produce quality concrete sections. The embedded reinforcement in the pool shell is designed to carry tensile loads. This may be bending stresses from structural loadings (settlement or water/backfill), or volume changes from drying shrinkage and temperature changes. Cutting a reinforcing bar would certainly negate its ability to carry loads in the vicinity of the cut and reduce the load carrying capacity until the development length allows the reinforcing bar to start carrying it full load.

The layout of your cracked section isn’t clear from your description. An 8 to 10 mil (2 to 2.5 mm) crack is sizable in a water-containing structure. Fixing the existing crack with a reinforcing bar epoxied in place across the crack may be effective. However, that solution would only carry any additional load on the section (structural or volume change), as the existing loads have already created cracks. Thus, you should also address filling the crack as part of the solution. This may be with epoxy injection or swellable polyurethane grouts. You should consult with the pool design engineer for their recommendation on the best method for repair.

We are reinforcing an exterior pool wall with shotcrete, and wanted to know what preparations need to take place for the shotcrete to adhere correctly, and what the minimum thickness needs to be? We also need to level out the floor up to 5 in. (125 mm) that will gradually go to zero to meet other side. Can shotcrete be used in this application?

When shooting onto existing concrete sections the surface must be properly prepared and then shotcreted with proper shotcrete materials, equipment, and placement techniques. This will produce a construction joint that acts monolithically and not be a “cold” joint. Shotcrete placed onto an existing concrete surface will provide an excellent bond IF the following conditions are met:

  1. Make sure the surface is roughened and clean.
    1. The amplitude of roughness should be +/- 1/16th in. (1.6 mm) or more.
    2. If the surface was not roughened when it was chipped out, be sure to have the contractor roughen it.
    3. A high-pressure water blaster (5000 psi [35 MPa] or more) or abrasive blasting can help to roughen and clean the surface.
  2. Bring the concrete surface to saturated surface dry (SSD) condition. This means the surface feels damp, but water is not picked up on a hand.
  3. Make sure the shotcrete placement is properly executed with high velocity placement and quality materials.
    1. The shotcrete should have a minimum 28-day compressive strength of 4000 psi (28 MPa).
  4. Be sure the shotcrete contractor is using an air compressor able to produce at least 185 ft3/min (5.2 m3/min) for wet-mix and 385 ft3/min (11 m3/min) for dry-mix (gunite) of air flow at 120 psi (0.8 MPa).
  5. Use of an ACI-certified shotcrete nozzleman is recommended.
  6. No bonding agent should be used. It will interfere with the natural bonding characteristics of shotcrete placement.
  7. A minimum thickness of no less than ½ in. (13 mm) is recommended.

This article on the excellent bond between shotcrete provides more detail: shotcrete.org/wp-content/uploads/2020/05/2014Spr_TechnicalTip.pdf:

Regarding the additional floor thickness, though it may be shotcreted by an experienced nozzleman, it is difficult to properly shoot horizontal surfaces and control rebound and overspray from the shotcrete placement. We suggest that casting and vibrating for consolidation the horizontal sections is preferred to shotcreting. You should consider a bonding agent since the concrete is cast against the existing concrete floor without any impact velocity. We would also not recommend tapering down to 0 in. thickness. The feather edge will tend to be an area that may easily spall over time. Thus, we recommend cutting an ½ to ¾ in. (13 to 19 mm) deep shoulder so the concrete can have some thickness at its thinnest locations.

I’m in the market for a saltwater pool and was wondering what the ASA recommended concrete compressive strength should be. I’ve read California mandates a 2500 psi (17 MPa) minimum, but some construction companies use 5000 psi (35 MPa). What is the ASA standard for a saltwater pool?

Our ASA Pool Position Statement on Compressive (Strength) Values of Pool Shotcrete states pool and shotcrete contractors have a responsibility to provide a pool structure that not only meets certain design specifications, but also meets basic durability values expected with shotcrete applications. The American Shotcrete Association’s (ASA) Pool and Recreational Shotcrete Committee and ASA Board of Direction have reaffirmed a 4000-psi minimum for in-place compressive strength pool concrete.

As a saltwater pool has a higher chloride content than fresh water you may want to consider using the requirements of ACI 350 (Code Requirements for Environmental Engineering Concrete Structures) where Table 4.2.2 – Requirements for Special Exposure Conditions has this requirement:

“For corrosion protection of reinforcement in concrete exposed to chlorides in tanks containing brackish water and concrete exposed to deicing chemicals, seawater, or spray from seawater – maximum water-cementitious. Materials ratio, by weight is 0.40 with a minimum 28-day compressive strength of 5000 psi.”

In summary the minimum 28-day compressive strength should be no less than 4000 psi, but for enhanced durability you may consider 5000 psi as required by ACI 350. You may find more guidance in our ASA Pool Position Statement “Watertight Shotcrete for Swimming Pools” at www.Shotcrete.org/Resources.

 

I am a TBM Tunnel Engineer from India, and I was looking for information on the applicable compressed air pressure range required for a wet-mix shotcrete application (small shotcrete pump-capacity 7 CU.M/Hr) hand spraying with a 30m hose for a better-compacted mix. I would kindly request you to please send me information on the pressure range to be expected for good quality shotcrete placement of the concrete mix on the rock substrate in NATM Tunneling.

Wet-mix shotcrete depends on air flow at the nozzle to accelerate the concrete to 60 to 80 mph (100 kph to 130 kph). Most air compressors produce their air flow capacity at 100 to 120 psi (7 to 8.4 kg/cm2) at the compressor. However, depending on the size length and couplings in the air hose, there may significant pressure drops when the air reaches the nozzle. Here’s what ACI 506R-16 Guide to Shotcrete Section 4.4.2 states for wet-mix:

“The recommended ft3/min (m3/min) needed for the wet-mix process is between 200 to 400 ft3/min (5.7 to 11.3 m3/min) air volume at 100 psi (7 bar). Higher air volume capacities are needed for higher volume and higher-velocity shotcrete applications. If a blowpipe is to be used during the shooting process, more air will be required to run both operations simultaneously. Conducting a test during the preconstruction testing phase using a blowpipe while gunning the wet-mix material will indicate if the air compressor has enough air volume capacity to perform both tasks at the same time. Long, small-diameter lines may not provide sufficient air volume capacity, even with a large air compressor. Test and consider increasing the size of the air line.”

Though there is no direct guidance for air pressure at the wet-mix nozzle you may consider the guidance for dry-mix air pressure in ACI 506R Section 4.4.1:

“The operating air volume (ft3/min [m3/min]) drives the material from the gun into the hose, and the air pressure is measured at the material outlet or air inlet on the gun. The operating pressure varies directly with the hose length, the density of the material mixture, the height of the nozzle above the gun, and the number of hose bends. Experience has shown that operating pressures should not be less than 60 psi (4 bar) when 100 ft (30 m) or less of material hose is used, and the pressure should be increased 5 psi (0.34 bar) for each additional 50 ft (15 m) of hose and 5 psi (0.34 bar) for each additional 25 ft (7.5 m) the nozzle is above the gun.”

The minimum 60 psi (4 bar) necessary for dry-mix could be applied to the wet-mix air supply as the velocity created by the air flow is similar.

I would like to know the fire rating information on a shotcrete wall, 8 in. thick.

Shotcrete is simply a placement method for concrete. Thus, fire resistance of any shotcreted concrete section can be evaluated by consulting ACI CODE-216.1- 14(19) Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies. There are many factors that affect the fire resistance so you will need to review the code to establish what’s appropriate for your structure.

Is there a guide to determining pressure applied to a form during shotcrete placement? I have seen references to 50 lb/ft2 (240 kg/m2) but no backup to this. Is the ACI formwork design guide applicable to shotcrete in some way?

Since shotcrete is pneumatically placed against a one-sided form there is no liquid concrete pressure against the form. When bench shooting vertical walls the majority of pressure from the high velocity impact is carried by the previously placed concrete as the concrete is stacked. Plus, this pressure is very localized, only affecting a small zone immediately adjacent to the impact area of the material stream. Here is an article on a research project that quantified the force https://shotcrete.org/wp-content/uploads/2020/05/2007Sum_TechnicalTip.pdf

From the paper conclusion “In normal spraying conditions, wet- and dry-mix shotcretes produced a force on the panel of about 45 and 20 lb (200 and 90 N), respectively. The maximum load recorded is 87 lb (389 N) and it was observed in simulating a water plug.”

If your shotcrete form is exposed to wind forces before placing shotcrete, you may want to consider the wind pressure that may be expected across the entire form during construction to keep the form intact. This should be much less than the 50 lb/ft2 pressure you mention. ACI formwork design is intended for cast concrete where liquid concrete is contained within a two-sided form and is NOT applicable to shotcrete placement. Some sources show a 60 mi/hr (100 km/ hr) wind exerting about 10 lb/ft2 (50 kg/m2) on a vertical wall.

What is the efficiency of dry-mix shotcrete? How much is over spray vs. how much sticks to the surface?

Dry-mix shotcrete may have more rebound (coarse aggregate that bounces off the surface) than wet-mix so it may be considered a little less efficient. However, predampening and the use of special nozzles can increase wetting and reduce rebound which makes the dry-mix efficiency approach wet-mix. Rebound may be estimated as 5 to 15%, with an average of 10% of the weight of the concrete materials. The experience and placing technique of the nozzleman can substantially affect the amount of rebound in either dry-mix or wet-mix. Overspray is much less and may depend on wind conditions and placing techniques. When looking at the overall efficiency of shotcrete placement in a given section, dry-mix materials can be tailored much closer to the actual need while wet-mix may have minimum concrete delivery volume and time constraints that would end up not using all the material delivered. Also, dry-mix has approximately ¼ the production rate of wet-mix, so in high-volume placements, wet-mix may have a natural advantage in productivity.

 

Is it true that shotcrete compression tests are more accurate and are likely to be higher (better) results? Basically, is there a difference when testing wet-mix shotcrete applied pneumatically as compared to simply being taken directly in cylinders from the batch plant or ready-mix delivery?

Shotcrete placement provides full consolidation of the concrete by high-velocity impact. Concrete placed into cylinders for testing is consolidated by multiple rodding in three layers. Shotcreting also has some percentage of rebound so the concrete mixture that remains in the panel is more paste-rich than the mixture entering the pump. Thus, shotcrete placement may provide better consolidation, and a more paste-rich in-place mixture resulting in higher compressive strengths. However, shotcrete compressive strength is evaluated by cores extracted from panels. The coring process can create microcracking in the exterior surface of the core and produce slightly lower compressive strength than cylinders that have no damage to the outer surface when removed from the cylinder form and tested. Overall, there doesn’t seem to be a significant difference when evaluating the concrete material’s strength by shotcrete placement or concrete cylinders taken before pumping.

You could establish a correlation on a specific project by taking cylinders before pumping and then shooting material test panels. Then testing the cylinders and cores from the panel at the same age.

I was wondering if ASA has any safety meeting/ tailgate presentations on high-pressure shotcrete work. I need to ensure my team knows how to properly disconnect hoses and align proper fitting procedures. Furthermore, do you have any guidance on a repair procedure for the rubber hose?

We have an ASA document, “Safety Guidelines for Shotcrete,” that addresses shotcrete safety. It is not a job specific safety plan but gives you guidance on the information you may include in your plans. You can find it on our bookstore at https://shotcrete.org/bookstore/?productpage=2. A free copy of the Safety Guidelines is provided to all of our corporate and sustaining members. Membership also provides many other benefits, including discounts on shotcrete nozzleman certification and participation in our committees. We have a committee specifically devoted to Education and Safety for shotcrete that is very active.

Regarding the repair of the rubber hose, there is no procedure to repair any breaches in the hose itself. A damaged or excessively worn hose should never be used as the pressure that builds when a delivery line plugs during pumping is extremely dangerous. Modern pumps can reach 2000 psi (14 MPa) internal concrete pressure when experiencing a plug and the hose must be capable of carrying that high pressure. The wet-mix shotcrete hose is heavily reinforced, and the couplings are designed for high pressure. Your crew must be sure that all clamps are fully engaged on the heavy-duty couplings, and that safety pins are in place.

We have an existing historic 4 in. (100 mm) hollow clay tile wall that is finished with a 3-coat gypsum plaster. We would like to spray shotcrete on the non-finished side of the wall to strengthen it. Will the application of shotcrete on the back side of the wall possibly damage the historic plaster and paint? Will there be too much of a vapor drive from the application for the plaster to hold? Have you experienced plaster deterioration or loose keys from the application of shotcrete on the backside of a wall?

As long as the hollow clay tile wall is rigid and stable, the shotcrete application should not impact the finished side plaster. Shotcrete impacts in a very localized area directly where the material stream is hitting the substrate. Research shows that the localized force is about 90 to 100 lbs (40 to 45 kg) when shooting directly on the substrate. If shooting a thicker wall using a benching method, most of the force is carried by the previously shot material, so it would have less impact. If the clay tile needs to be stiffened, an initial thin layer could be shot to provide additional thickness before the final thickness is placed. Though we don’t have any specific information about vapor transmittal, concrete used in shotcrete placement inherently has a low w/cm and less water in the mixture to bleed or create vapor. We haven’t had any reports of plaster or grout falling off the inside of masonry walls that have been structurally enhanced with shotcrete.