The ASA Technical Questions and Answers is a free service offered to all users, but primarily intended for engineers, architects, owners and anyone else who may be specifying the shotcrete process and/or has need for a possible answer to a technical question.
User agreement: The answers provided to submitted questions are intended for guidance in planning and executing shotcrete applications. This information is intended only for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations, and who will accept responsibility for the application of the material it contains. The American Shotcrete Association provides this information based on the best knowledge available to them and disclaims any and all responsibility for the information provided. The American Shotcrete Association will not be liable for any loss or damage arising therefrom.
If you are unable to find what you are looking for in the archive, then submit a new technical question.
UndergroundQ Can shotcrete be applied on wet shale rock? How well does shotcrete bond to shale?
Shotcrete is routinely used to seal shale after excavations. It is typically done as soon as possible after the excavation because the shale will deteriorate when exposed to the air. When shotcreting, it is considered good practice to wet the receiving surface prior to gunning to create a saturated surface-dry (SSD) condition so the substrate will not draw moisture from the newly placed shotcrete. A good SSD condition is where the surface is wet without any standing water on it. Gunning over wet shale should not be a problem unless the water seeping from the shale is moving. If that is the case, we would recommend installing weep holes with plastic pipe at the locations where the water is seeping from and using an accelerator to flash-set the material immediately around the weep-hole pipe. It is also a good idea to install weep holes at regular intervals along the excavation or exposed hillside. It is important to use a qualified shotcrete subcontractor for this or any high-quality shotcrete installation. A qualified shotcrete contractor will use ACI-certified nozzlemen and should provide you with a résumé of similar, successfully installed projects, along with the up-to-date contact information of representatives from the owners or engineers involved in those projects. The ASA Buyers Guide (www.shotcreteweb.wpengine.com/pages/products-services-information/buyers-guide/) is an excellent source of shotcrete contractors.
UndergroundQ Can shotcrete be applied to a slope to act as a retaining wall without a moisture barrier? If a moisture barrier is recommended, what type should we use?
Most shotcrete slopes are placed without moisture barriers and are constructed to ensure that water pressure does not build up behind the slope and create hydrostatic pressure on the backside of the shotcrete. This is generally done with drainage material and weep holes or vents near the base of the shotcrete slope. Please bear in mind that shotcrete slope paving alone is not generally considered as a retaining wall. If shotcrete slope paving is to be used as a retaining structure, it is generally done in conjunction with soil nailing, tie backs, or some type of structural footing. If the shotcrete is intended to be used as a structural wall, a structural engineer must be consulted to be sure all structural issues are addressed.
UndergroundQ Can shotcrete be considered as structural concrete with wire mesh and rockbolts in tunnel linings?
Shotcrete is a placement method for concrete. It is routinely used for a wide variety of structural applications. It has been used for both initial and final linings in tunnels where it is commonly reinforced with wire mesh, fibers, or reinforcing steel. You may want to review our past Shotcrete magazine articles on tunnel shotcrete at https://shotcrete.org/archive-search/
using keywords such as “tunnel,” “underground,” and “linings.” Also, we have two position papers from our underground committee: “Spraying Shotcrete Overhead in Underground Applications,” and “Spraying Shotcrete on Synthetic Sheet Waterproofing Membranes,” that you may find informative. Also, ACI 506.5R-09, “Guide for Specifying Underground Shotcrete,” can provide insight into topics important for using and specifying underground shotcrete.UndergroundQ Can shotcrete be effectively used to repair holes in an old 8 ft (2.4 m) diameter storm sewer tunnel constructed of stone/brick/mortar? One of the holes is completely worn through to the earthen backfill material. The other two holes are missing the innermost layer of stone masonry, but the outer layer of masonry is still in place.
The friction coefficient n of well-finished shotcrete for use in Kutter’s equation (and, more streamlined, Manning’s equation) is generally used as 0.012. Shotcrete is used not only to improve flow characteristics of brick, corrugated metal, or any other pipe construction but can also be conventionally reinforced as a structural liner to eliminate the need for liner plates or other pipe-lining alternatives.
UndergroundQ Do you have any publications on shotcrete curing, specifically in tunneling? How is shotcrete cured in tunnel constructions with the temperature and moisture problems?
All concrete must be cured to ensure full and proper hydration of cementitious components control of shrinkage. Shotcrete is concrete placed pneumatically, therefore must be cured, as all concrete must be. The tunnel environment presents positive and negative conditions. The humidity in an underground space is generally high in humidity and constant in a moderate to cool temperature. Both conducive to slow egress of moisture from the concrete and “natural” curing. The negative in tunnel construction is ventilation air which is generally of high volume and high speed, which tends to dry the surface and “pull” important moisture out of the sprayed concrete. Most tunnels can tolerate extra water in the work space, therefore misting or spraying water onto the concrete surfaces, especially overhead, is the most practical method of curing. Sprayed on liquid membranes are effective as long as their interference with bonding of additional layers of concrete, sprayed or cast, is not an issue. Recommended reading: “Understanding and Controlling Shrinkage and Cracking in Shotcrete” by D.R. Morgan and C.Chan, published in the ASA Shotcrete magazine.
UndergroundQ How can I maintain a 2 in. (50 mm) thickness of shotcrete in a rock excavated tunnel?
There are many ways of maintaining the thickness of shotcrete. When placing shotcrete over a rough rock excavation, the thickness will vary with more material filling in the voids than covering the high points. Some methods of checking or maintaining the thickness are as follows: stabbing the plastic shotcrete with a depth gauge; preinstalling pins to the desired thickness; and using groundwires or shooting wires that would create an even plane over the length of the wires.
UndergroundQ I am a Civil Engineer working on a hydropower project. Is it possible to place shotcrete at a thickness of 24 in. (600 mm) inside a tunnel that will be used as a water tunnel to generate power?
Yes, it is possible to shoot 24 in. (600 mm) thick tunnel linings. There are various ways of doing this, depending on the reinforcing steel configuration. One method we have successfully used for shooting tunnel linings this thick with a double mat of reinforcing bar (1 in. [20 mm] diameter bars at 6 in. [150 mm] on center, vertically and horizontally) is to bench gun shoot the walls up to the spring line with a wet-mix silica-fume-modified shotcrete (without accelerator) and then ribbon-shoot (2 ft [0.5 m] wide strips) overhead using the same mixture but with the option of using an alkali-free accelerator added at the nozzle.
If the shotcrete requires a smooth finish (equivalent to a cast-in-place concrete finish), then the initial shotcrete is shot to within about 1 in. (30 mm) of the final shotcrete thickness and allowed to set and harden. Following that, a final non-accelerated finish coat can be applied that can be trimmed to shooting wires with a cutting rod, closed up with a darby, and then trowelled with either a magnesium or steel trowel, depending on the required finished surface texture.
Such work can be done with a remote-control manipulator arm (robot) or, for more precision, with hand nozzling out of a basket on a manlift (provided the tunnel floor is sufficiently smooth for operation of a manlift). The bottom line: hire a contractor who has experience in conducting such work.UndergroundQ I am a structural engineer and we have recently begun work with a shoring contractor. We have been designing soil nails, micropiles, soldier piles, and so on with temporary and permanent shotcrete facings. The contractor has requested that some of our future designs use chain-link mesh in lieu of welded wire mesh, particularly in temporary situations with walls under 10 ft (3 m). I understand that chain link is a cost-effective alternative and, according to the contractor, handles the shotcrete well. Do you have any experience with this type of design/installation process? Can you point me to any literature on the use of chain-link reinforcement in shotcrete walls?
Some mines have used chain link mesh in shotcrete in severely deforming ground and claim that it is better in holding the ground than mesh after large deformations, in which the shotcrete sustains major cracking with deformations. Other than for such unusual applications, we do not recommend the use of chain-link reinforcement in shotcrete. It cannot be fixed “tight” and as such is susceptible to vibration and movement during shooting, resulting in shotcrete sloughing and formation of voids in the shotcrete. Also, the mesh interconnections are conducive to the formation of voids during shooting. Additionally, there don’t appear to be any consistent material standards on the strength, flexibility, or brittleness of the steel (or other materials) used in the fencing material, so a designer has no way to establish the tensile or flexural strength of the concrete sections. In brief, don’t use chain-link mesh if you want to produce quality, durable shotcrete.
UndergroundQ I am a structural engineer working on underground structures such as tunnels and caverns. I would like to know the permissible shear strength of shotcrete to be taken for M30 Grade SFRS (M30 = 30 MPa [4350 psi] at 28 days). I would like to know more about its other properties, as well.
Shotcrete is simply a placing method for concrete. Thus, the in-place material properties are essentially the same as cast concrete. A specific value for the shear is beyond the scope of our Association because many design and material properties can affect the shear capacity. We would suggest you engage a Professional Engineer who specializes in Underground Shotcrete. You should consult our Buyers Guide to find such a consultant. ACI 506R-05, “Guide to Shotcrete”, would be a helpful primer to learn more about shotcrete.
UndergroundInternationalGeneralQ I am a TBM Tunnel Engineer from India, and I was looking for information on the applicable compressed air pressure range required for a wet-mix shotcrete application (small shotcrete pump-capacity 7 CU.M/Hr) hand spraying with a 30m hose for a better-compacted mix. I would kindly request you to please send me information on the pressure range to be expected for good quality shotcrete placement of the concrete mix on the rock substrate in NATM Tunneling.
Wet-mix shotcrete depends on air flow at the nozzle to accelerate the concrete to 60 to 80 mph (100 kph to 130 kph). Most air compressors produce their air flow capacity at 100 to 120 psi (7 to 8.4 kg/cm2) at the compressor. However, depending on the size length and couplings in the air hose, there may significant pressure drops when the air reaches the nozzle. Here’s what ACI 506R-16 Guide to Shotcrete Section 4.4.2 states for wet-mix:
“The recommended ft3/min (m3/min) needed for the wet-mix process is between 200 to 400 ft3/min (5.7 to 11.3 m3/min) air volume at 100 psi (7 bar). Higher air volume capacities are needed for higher volume and higher-velocity shotcrete applications. If a blowpipe is to be used during the shooting process, more air will be required to run both operations simultaneously. Conducting a test during the preconstruction testing phase using a blowpipe while gunning the wet-mix material will indicate if the air compressor has enough air volume capacity to perform both tasks at the same time. Long, small-diameter lines may not provide sufficient air volume capacity, even with a large air compressor. Test and consider increasing the size of the air line.”
Though there is no direct guidance for air pressure at the wet-mix nozzle you may consider the guidance for dry-mix air pressure in ACI 506R Section 4.4.1:
“The operating air volume (ft3/min [m3/min]) drives the material from the gun into the hose, and the air pressure is measured at the material outlet or air inlet on the gun. The operating pressure varies directly with the hose length, the density of the material mixture, the height of the nozzle above the gun, and the number of hose bends. Experience has shown that operating pressures should not be less than 60 psi (4 bar) when 100 ft (30 m) or less of material hose is used, and the pressure should be increased 5 psi (0.34 bar) for each additional 50 ft (15 m) of hose and 5 psi (0.34 bar) for each additional 25 ft (7.5 m) the nozzle is above the gun.”
The minimum 60 psi (4 bar) necessary for dry-mix could be applied to the wet-mix air supply as the velocity created by the air flow is similar.