The ASA Technical Questions and Answers is a free service offered to all users, but primarily intended for engineers, architects, owners and anyone else who may be specifying the shotcrete process and/or has need for a possible answer to a technical question.
User agreement: The answers provided to submitted questions are intended for guidance in planning and executing shotcrete applications. This information is intended only for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations, and who will accept responsibility for the application of the material it contains. The American Shotcrete Association provides this information based on the best knowledge available to them and disclaims any and all responsibility for the information provided. The American Shotcrete Association will not be liable for any loss or damage arising therefrom.
If you are unable to find what you are looking for in the archive, then submit a new technical question.
StructuralQ I live in NW Florida, Fort Walton Beach. In 1987 a previous owner gutted and substantially rebuilt my house. The exterior brick walls were covered with wire mesh and over 1 in. (25 mm) of coquina shell shotcrete. I bought the house in 1993. I am forever trying to reduce my bills. I would like to find any information I can use to reduce my home insurance. Do you have any links to anyone that has data about my siding being more fire resistant or wind resistant than ordinary masonry/brick veneers? Any guidance you can provide will be greatly appreciated.
“Coquina shell shotcrete” is not a well-defined concrete material. Though it may have been promoted to you as shotcrete, it may well have been a stucco-like application accomplished with low-velocity plastering equipment, and thus not high-velocity shotcrete placement. Without physical characteristics of the in-place material (strength, density, type, and amount of reinforcement), it is hard to delineate the structural enhancement the coating may provide. You could have an evaluation by an engineer or testing lab to ascertain the characteristics of the in-place material. Then refer to ACI 216.1-14, “Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies,” to see whether your composite system has enhanced fire resistance as compared to brick alone. Regarding wind resistance, you would need to have a structural engineer evaluate the composite system for any potential increase in strength against wind loadings.
StructuralQ I need to find the reference in ACI standards indicating the technical and practical reasons why thermal expansion joints and contraction settings are eliminated in the stabilization of nonstructural slopes covered with shotcrete and steel fiber. Can you help?
Shotcrete is a method of placing concrete. Fibrous shotcrete will have very similar, if not identical, properties as fibrous cast concrete. Expansion and contraction joints should be similar in shotcrete to those needed in cast concrete. ACI 224.3R-95, “Joints in Concrete Construction,” covers joints in many different applications. The closest relevant document for eliminating joints is ACI 360R-10, “Guide to Design of Slabs-on-Ground,” where, in Section 8.3, it states:
“To eliminate sawcut contraction joints, a continuous amount of reinforcement with a minimum steel ratio of 0.5% (PCA 2001) of the slab cross-sectional area in the direction where the contraction joints are eliminated is recommended.”
This 0.5% reinforcement is consistent with the provisions of ACI 350-06, “Code requirements for Environmental Engineering Concrete Structures and commentary,” for the minimum reinforcement for temperature and shrinkage without contraction joints.
You can refer to ACI 506 series documents regarding shotcrete, and possibly the FHWA SA-96-069R “Manual for Design, Construction, and Monitoring of Soil Nail Walls” for additional guidance. Copies of the ACI 506 series documents are available in the ASA Bookstore.StructuralQ I need to specify a shotcrete cover to some structural steel in a coal dump hopper. The idea is to provide abrasion and impact protection to the steel beams. However, the client cannot afford to have the hopper out of service for an extended period. Is there a “high-early-” strength option for shotcrete as there is for cast-in-place concrete?
There are prepackaged materials commercially available for impact and abrasion resistance. Please contact material suppliers from “ASA’s Buyers Guide” for product information: shotcrete.org/Buyers Guide.
StructuralQ I own a home on a very busy street and the house placement borders the street, approximately 75 ft (23 m) from the curb. Traffic flow has increased over the past year, and I have tried all suggested and approved soundproofing wall systems with varied results. It would seem that a shotcrete product sprayed within a wall cavity would work great. My assumption is that I would need to insulate the outward face of the cavity enough to prevent excessive condensation and moisture buildup. This would certainly solve the sound problem (depending on the mass sprayed). Are there any suggestions or references you might be able direct me to?
A properly designed shotcrete composite wall system would certainly create a quiet atmosphere in the interior of the house. There are 3-D shotcrete wall systems on the market which use shotcrete on both the interior and exterior surfaces with a foam material in the center for insulation and vapor barrier. Attempting to do something like this to an existing structure would require a lot of analysis. Shotcrete is a method of placing concrete and adding shotcrete to an existing wall would significantly increase the weight of the wall and could overload the footings or impact other parts of the system. A structural engineer well-versed in residential construction should be consulted before attempting such a modification.
PoolStructuralQ I was taught in engineering courses that conventional concrete should not be counted on to carry tensile stress. For steel reinforced concrete, the reinforcing bar is designed to carry all tensile loads. Although concrete obviously has some tensile strength, it is too low and prone to cracking failure to consider it in design. In fact, I believe you can assume it is cracked from the shrinkage during curing. Is gunite treated the same way? I have a pool that is developing a crack through an elevated wall/beam and down into the plaster to the bottom floor at the sun shelf. I witnessed the plumbers cutting some rebar in the beam to allow for PVC plumbing to water sheer (up at top of beam, just under the tile topping) and I worry this is the root cause along with settlement that put the top of the beam in tension. The rebar down low should be intact and I hope the crack width may stay minor down in the plaster. On top of the tiles beam where the maximum tensile stress would have been, the crack is fairly wide. The crack movement opened up a gap in the grout line between tiles of about 0.08 to 0.10 in. (2-2.5 mm). I think it was a real sin for them to have cut the rebar. If it is necessary to reinforce the tensile side to halt future movement, I would think cutting a slot or two in the gunite across the crack (say 12 in. [300 mm] each side. Up high just under the water sheer) and epoxy a rebar in the slots.
Shotcrete, both dry-mix (gunite) and wet-mix are a placement method for concrete. Wet-mix uses premixed concrete while dry-mix simply adds water to the concrete materials at the nozzle. Both dry-mix and wet-mix with proper materials, equipment, and placement with produce quality concrete sections. The embedded reinforcement in the pool shell is designed to carry tensile loads. This may be bending stresses from structural loadings (settlement or water/backfill), or volume changes from drying shrinkage and temperature changes. Cutting a reinforcing bar would certainly negate its ability to carry loads in the vicinity of the cut and reduce the load carrying capacity until the development length allows the reinforcing bar to start carrying it full load.
The layout of your cracked section isn’t clear from your description. An 8 to 10 mil (2 to 2.5 mm) crack is sizable in a water-containing structure. Fixing the existing crack with a reinforcing bar epoxied in place across the crack may be effective. However, that solution would only carry any additional load on the section (structural or volume change), as the existing loads have already created cracks. Thus, you should also address filling the crack as part of the solution. This may be with epoxy injection or swellable polyurethane grouts. You should consult with the pool design engineer for their recommendation on the best method for repair.
StructuralQ I would like advice about spraying shotcrete on the exterior walls of a house I am building. In constructing the exterior walls of the house, I plan to shoot approximately 0.75 in. (19 mm) on Day 1 and shoot 1.25 in. (31 mm) on Day 2 for 2 in. (50 mm) thick walls. I have hung 14-gauge wire mesh spaced at 1 in. (25 mm) over all the walls and am planning to use a 3000 psi (20.7 MPa) mixture. I am greatly concerned about cracking. Is my planned technique a good way to mitigate cracking or are there better approaches? Should I consider upping the strength of the concrete?
In structural applications, most of the impact force from nozzling shotcrete is directed toward compacting the shotcrete in place rather than against the formwork. This was the subject of a study conducted by Marc Jolin of Laval University, Quebec City, QC, Canada, and reported in the Fall 2008 issue of Shotcrete magazine. There is virtually no hydrostatic pressure on the forms from the application using the shotcrete process. A copy of this study can be viewed on the ASA WebIt is fine to place shotcrete in two layers on 2 consecutive days, although simply placing two layers on 2 consecutive days won’t prevent long-term drying shrinkage cracking. For the best bond, the surface of the shotcrete on Day 1 should be given a rough broom finish to provide a rough texture for the Day 2 shotcrete to bond to. On Day 2, before shooting, wet the surface of the Day 1 shotcrete to prevent a hot, dry surface from absorbing water from the fresh shotcrete. Please note that the surface needs to be dampened but allowed to dry to an SSD condition. A surface that is too wet can inhibit good bonding. It is essential to moist-cure the shotcrete as soon as it has finally set to help reduce early-age shrinkage cracking. On a hot, windy day, you may need to fog the surface soon after placement with a pressure washer using a fogging nozzle to reduce the rapid evaporation of water from the surface of the shotcrete. Wet curing with a wetted burlap overlay or drip system for at least 3 days (preferably 7 days) is recommended to help reduce the potential for longer-term drying shrinkage cracking. Using macrosynthetic fibers in the shotcrete mixture will also help reduce early-age shrinkage cracking. Because you are in Florida, unless you are shooting in the dead of winter, you may also want to consider using a concrete mixture with up to 20 to 25% fly ash. This will slow down the hydration of the cement and resultant set time to give you some more time to finish the surface and get proper curing started. Fly ash also helps reduce the concrete permeability and increases the long-term strength and is generally less expensive than portland cement. If you use a concrete mixture with silica fume (also called microsilica), it will increase the water demand of the mixture during hydration and has a greater tendency for early-age plastic shrinkage cracks. Thus, if you use silica fume, you will need to pay close attention to keep the surface wet through fogging and then wet curing as soon as it is practical. As previously mentioned, a 2 x 2 or 3 x 3 in. (50 x 50 or 75 x 75 mm) wire mesh would be preferred to reduce congestion of the reinforcement. Stay away from rolled mesh, as it is very difficult (even nearly impossible) to get to lay flat. Sheets of welded wire mesh are recommended. ASA recommends a minimum 28-day compressive strength for shotcrete of 4000 psi (27.6 MPa). A 3000 psi (20.7 MPa) mixture will have a higher water-cement ratio (w/c); therefore, there is more water in the mixture, which will significantly increase the potential for drying shrinkage cracking in the final surface. A 4000 psi (27.6 MPa) mixture is easily achieved with current portland cements and normal supplemental cementitious products such as fly ash. Finally, you mentioned that you will be shooting the surface of a house. You haven’t provided any details about what you are shooting the shotcrete on, but the substrate must be rigid enough to not vibrate when shotcrete hits the surface. If it is not rigid enough, the vibration of adjacent areas of freshly shot plastic shotcrete could cause cracking. This would be more of a problem in the Day 1 coat of shotcrete, but cracks that form in the Day 1 shotcrete would create a weaker section and increase the likelihood of mirrored cracking in the Day 2 layer. Again, please note: While it is appropriate to wet down the Day 1 shotcrete prior to application of the Day 2 shotcrete, it is important to let the wetted Day 1 shotcrete dry back to an SSD condition before application of the Day 2 shotcrete. If the Day 2 shotcrete is applied to a wet substrate (with liquid water on the surface), it will fail to meet the specified 150 psi (1 MPa) bond pulloff strength requirements for the project.
StructuralGeneralQ I would like to ask if there are any articles, references, etc, which reference procedures to determine the maturity of the concrete applied via shotcrete? Basically, how to generate the validation curves?
Shotcrete is a placement method for concrete. Thus, generating the maturity curves would be based on the concrete mixtures. There are several online resources about the maturity method. One that discusses production of the curves is from the Minnesota DOT and available in PDF format at www.dot.state.mn.us/materials/concretedocs/MaturityMethodProcedure.pdf.
ArchitecturalStructuralGeneralQ I would like to know the fire rating information on a shotcrete wall, 8 in. thick.
Shotcrete is simply a placement method for concrete. Thus, fire resistance of any shotcreted concrete section can be evaluated by consulting ACI CODE-216.1- 14(19) Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies. There are many factors that affect the fire resistance so you will need to review the code to establish what’s appropriate for your structure.
StructuralQ I’m planning to add 6 in. (152 mm) of shotcrete to an existing 12 in. (305 mm) wall of a below-surface concrete tank to accommodate the removal of an existing middle support slab. The soil grade is approximately near the top of the existing tank wall. I’ve been told that since the existing wall is preloaded with soil, adding shotcrete will not increase the strength of the thickened wall and that the only way the wall will act as a whole (based on 18 in. [457 mm] thickness) is if the retained soil load is removed, then the shotcrete is added, and then soil is put back in place. Is this assessment accurate? Is there a way make this wall work as 18 in. (457 mm) without removing the existing soil?
Stress distribution from external loads through the tank wall with the shotcrete lining will depend on the geometry of the tank and the structural function of sections to be removed. A professional engineer experienced in shotcrete and concrete tank design should be consulted to ascertain the structural capacity of the completed wall. It would certainly be important to create a good bond plane by roughening the surface and removing any loose or fractured materials and using sufficient drilled dowels to make the existing 12 in. (305 mm) wall and new 6 in. (152 mm) overlay work well together. Also, it might help to specify the use of a shrinkage reducing admixture.
StructuralQ Is it feasible and economical to construct floodwalls approximately 5 ft (1.5 m) high with shotcrete?
Yes, it is feasible and economical to construct structural walls such as a 5 ft (1.5 m) high floodwall. Shotcrete is a method of placing concrete and has similar, if not identical, properties after placement. As you can imagine, shotcrete needs to be shot against something such as a one-sided form, gabion baskets, earth, expanded metal lath, or just about any structurally sound thing you can think of. The economy of the system is dependent upon the site conditions and the ingenuity of the contractor. An example of a similar structure is on the east side of I-880, south of Dixon Landing Road in Milpitas, CA. This project, a flood control channel, involved trapezoidal channel sections, vertical wall sections, and a combination of sloped walls with a vertical extension. If you have further interest, you should contact an organization with experience in this area. An excellent source is the directory of Corporate Members in the ASA Buyers Guide.