In recent years, shotcrete has been widely used for ground support in civil tunnels and mines in North America. Shotcrete technologies have advanced with robust robotic sprayers, high-performance shotcrete mixture designs, and high-performance fiber reinforcement in conjunction with rigorous qualification of shotcrete nozzlemen and QC inspection and testing programs. Design engineers and contractors are using shotcrete more and more often for various underground applications including ground support and final linings in tunnels in soft ground and hard rock mines, as well as in repair and rehabilitation projects in railway tunnels and other underground openings. Large underground caverns have been constructed using shotcrete as the initial liner in San Francisco and Los Angeles, and for both the initial liner and final liner in New York and Washington D.C. This article focuses on recent underground shotcrete technology developments from project experience and provides lessons learned. It also demonstrates that proper quality control and shotcrete qualification programs are critical for successful shotcrete projects.
Shotcrete’s ability to encapsulate dense structural rebar support makes it an ideal candidate for seismic retrofits or other structural support elements. The high velocity compaction of shotcrete placement and real-time visual inspection of placement make shotcrete a valuable placement method where proper encapsulation is difficult to see and access.
The ASA Technical Questions and Answers is a free service offered to all users, but primarily intended for engineers, architects, owners and anyone else who may be specifying the shotcrete process and/or has need for a possible answer to a technical question.
User agreement: The answers provided to submitted questions are intended for guidance in planning and executing shotcrete applications. This information is intended only for the use of individuals who are competent to evaluate the significance and limitations of its content and recommendations, and who will accept responsibility for the application of the material it contains. The American Shotcrete Association provides this information based on the best knowledge available to them and disclaims any and all responsibility for the information provided. The American Shotcrete Association will not be liable for any loss or damage arising therefrom.
If you are unable to find what you are looking for in the archive, then submit a new technical question.
ACI 318-14 (Building Code Requirements for Structural Concrete) requires post-installed expansion anchors to meet the testing criteria of ACI 355.2-07 (Qualification of Post-installed Mechanical Anchors in Concrete). ACI 355.2 specifies certain anchor testing and evaluation requirements to verify suitable anchor performance and to determine other aspects (such as failure mode) to use in conjunction with Chapter 17 of ACI 318 when designing the post-installed expansion anchors. Anchor testing is required largely to be performed by an independent agency and normally is conducted in normal weight and/or light weight concrete that meet pertinent ACI, ASTM and other requirements. Some post-installed expansion anchor manufacturers (like Hilti) have not had their anchors tested per ACI 355.2 in shotcrete type concrete, only tested in normal weight and light weight concrete. As such, these anchor manufacturers typically do not publish/offer any permitted load ratings, installation torques or other design and installation requirements for their expansion bolts when used in shotcrete. Instead, they recommend site testing to determine anchor performance or that the responsible design engineer can make an engineering judgment on anchor acceptability, as appropriate, if site testing is not performed. Do you have knowledge of any expansion bolt manufacturers that have tested their products is typical shotcrete? If yes to #1 above, do you know if the testing was done per ACI 355.2 requirements?
Shotcrete is a placement method for concrete. With proper equipment and placement techniques, concrete shotcreted in place will have strength, unit weight, permeability, and other hardened properties equivalent or superior to cast concrete consolidated by vibration. Due to delivering concrete material through relatively small diameter lines (1.5 to 2 in.) [38 to 51 mm] concrete mixtures for shotcrete placement typically limit the maximum coarse aggregate size to a nominal 3/8 to ½ in. (9.5 – 13 mm) size.
Thus, answering your specific questions:
- We are not aware of any expansion bolt manufacturers tests that used shotcrete placement of concrete for their test samples. However, tests on cast concrete should be equivalent with a given compressive strength and aggregate size/type in the concrete mixture.
- We expect that as answered in #1, that the tests run with ACI 355.2 requirements in cast concrete would have similar results when used with shotcrete placement of the concrete mixtures with similar hardened properties.
Also, note that ACI 318-19 directly includes shotcrete as a placement method for structural concrete.
We have a wet-mix shotcrete steel fiber overhead application progressing in our state. The question is about the use of a steel trowel finish, as opposed to say a magnesium or wood float finish. In the ASA Shotcrete Inspector seminar, it was stated that a steel trowel is less durable, reduces freeze-thaw resistance and shows cracking more proximately. As this particular application is overhead and, in a tunnel, there is not as much of a concern with water infiltration and the associated freeze-thaw exposure. We usually don’t allow steel trowels for flat work, due to deicing salts, but that concern wouldn’t apply here. My superintendent has asked me to reach out to you to see if you might have any further detailed advice on this type of application. Construction is wanting a smooth finish and looks do matter here as it is a high-profile project. If the DOT were to allow the steel trowel for finishing, what would be your concerns or suggestions to this approach?
Freeze-thaw deterioration is dependent on the concrete being saturated in multiple freezing/thawing cycles. In an overhead application, where water can’t stand on the surface, the concrete can’t be saturated unless water permeates through from the upper surface. And with good quality concrete in the tunnel, water shouldn’t permeate through, so it should be functionally watertight. As a result, freeze-thaw likely isn’t a critical durability issue.
A steel trowel finish does require extra working of the surface and would require the contractor to be very attentive to the proper time to obtain the finish yet not overly disturb the fresh concrete. Gravity is working against the overhead concrete staying in place.
Having a smooth steel trowel finish would make minor shrinkage cracks more noticeable. However, in the tunnel without exposure to sunlight or much wind exposure, and with proper attention to curing, perhaps surface cracking will be minimal.
I was taught in engineering courses that conventional concrete should not be counted on to carry tensile stress. For steel reinforced concrete, the reinforcing bar is designed to carry all tensile loads. Although concrete obviously has some tensile strength, it is too low and prone to cracking failure to consider it in design. In fact, I believe you can assume it is cracked from the shrinkage during curing. Is gunite treated the same way? I have a pool that is developing a crack through an elevated wall/beam and down into the plaster to the bottom floor at the sun shelf. I witnessed the plumbers cutting some rebar in the beam to allow for PVC plumbing to water sheer (up at top of beam, just under the tile topping) and I worry this is the root cause along with settlement that put the top of the beam in tension. The rebar down low should be intact and I hope the crack width may stay minor down in the plaster. On top of the tiles beam where the maximum tensile stress would have been, the crack is fairly wide. The crack movement opened up a gap in the grout line between tiles of about 0.08 to 0.10 in. (2-2.5 mm). I think it was a real sin for them to have cut the rebar. If it is necessary to reinforce the tensile side to halt future movement, I would think cutting a slot or two in the gunite across the crack (say 12 in. [300 mm] each side. Up high just under the water sheer) and epoxy a rebar in the slots.
Shotcrete, both dry-mix (gunite) and wet-mix are a placement method for concrete. Wet-mix uses premixed concrete while dry-mix simply adds water to the concrete materials at the nozzle. Both dry-mix and wet-mix with proper materials, equipment, and placement with produce quality concrete sections. The embedded reinforcement in the pool shell is designed to carry tensile loads. This may be bending stresses from structural loadings (settlement or water/backfill), or volume changes from drying shrinkage and temperature changes. Cutting a reinforcing bar would certainly negate its ability to carry loads in the vicinity of the cut and reduce the load carrying capacity until the development length allows the reinforcing bar to start carrying it full load.
The layout of your cracked section isn’t clear from your description. An 8 to 10 mil (2 to 2.5 mm) crack is sizable in a water-containing structure. Fixing the existing crack with a reinforcing bar epoxied in place across the crack may be effective. However, that solution would only carry any additional load on the section (structural or volume change), as the existing loads have already created cracks. Thus, you should also address filling the crack as part of the solution. This may be with epoxy injection or swellable polyurethane grouts. You should consult with the pool design engineer for their recommendation on the best method for repair.
I would like to know the fire rating information on a shotcrete wall, 8 in. thick.
Shotcrete is simply a placement method for concrete. Thus, fire resistance of any shotcreted concrete section can be evaluated by consulting ACI CODE-216.1- 14(19) Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies. There are many factors that affect the fire resistance so you will need to review the code to establish what’s appropriate for your structure.
Is there a guide to determining pressure applied to a form during shotcrete placement? I have seen references to 50 lb/ft2 (240 kg/m2) but no backup to this. Is the ACI formwork design guide applicable to shotcrete in some way?
Since shotcrete is pneumatically placed against a one-sided form there is no liquid concrete pressure against the form. When bench shooting vertical walls the majority of pressure from the high velocity impact is carried by the previously placed concrete as the concrete is stacked. Plus, this pressure is very localized, only affecting a small zone immediately adjacent to the impact area of the material stream. Here is an article on a research project that quantified the force https://shotcrete.org/wp-content/uploads/2020/05/2007Sum_TechnicalTip.pdf
From the paper conclusion “In normal spraying conditions, wet- and dry-mix shotcretes produced a force on the panel of about 45 and 20 lb (200 and 90 N), respectively. The maximum load recorded is 87 lb (389 N) and it was observed in simulating a water plug.”
If your shotcrete form is exposed to wind forces before placing shotcrete, you may want to consider the wind pressure that may be expected across the entire form during construction to keep the form intact. This should be much less than the 50 lb/ft2 pressure you mention. ACI formwork design is intended for cast concrete where liquid concrete is contained within a two-sided form and is NOT applicable to shotcrete placement. Some sources show a 60 mi/hr (100 km/ hr) wind exerting about 10 lb/ft2 (50 kg/m2) on a vertical wall.
I would like to ask if there are any articles, references, etc, which reference procedures to determine the maturity of the concrete applied via shotcrete? Basically, how to generate the validation curves?
Shotcrete is a placement method for concrete. Thus, generating the maturity curves would be based on the concrete mixtures. There are several online resources about the maturity method. One that discusses production of the curves is from the Minnesota DOT and available in PDF format at www.dot.state.mn.us/materials/concretedocs/MaturityMethodProcedure.pdf.
10 Ave SE Bridge Rehab
BRIDGE HISTORY Listed on the National Register of Historic Places in 1989, the 10th Avenue Bridge in Minneapolis features seven reinforced
concrete arches to span the Mississippi River. The historic 1,141-ft (348 m) open spandrel column arch structure carries over 10,000 vehicles daily, as well as hundreds of pedestrians and cyclists between downtown Minneapolis and an area dominated by the University of Minnesota on the east bank.