There are a number of ways to treat these stains. Successful treatment will depend on the specific material in the stain and the depth of the stain. The first step would be to try to draw out the material from the surface by applying a poultice of finely ground kitty litter, cement powder, or talc and allow the surface to dry. Repeat this application if necessary.
Next, try a scrubbing a nominally dry detergent powder into the surface. Allow the powder to dry and rinse off the surface. Follow this treatment with a liquid detergent scrubbed with a bristle brush into the surface. Allow the liquid to remain in the surface for 1 to 2 days, then rinse thoroughly. Should the staining persist, you may want to try a proprietary stain remover specifically intended for use on concrete.
Muratic acid is also an option. However, muratic acid can have deleterious affects on the concrete if not thoroughly removed. Because of its potential to attack concrete aggregates and mortar, along with the hazards inherent with applying and removing acid, muratic acid should only be used with the guidance of an experienced consultant. Following a thorough power washing, the surface should be mechanically roughened to ensure proper bond with the shotcrete.
ASTM C 33 contains a variety of aggregate gradations. Gradations recommended for shotcrete applications can be found in ASTM C 1436, Standard Specification for Materials for Shotcrete, or ACI 506, Guide to Shotcrete. Note that ACI 506 includes the caveat that “aggregates failing to comply with gradations shown in Table 2.1 may be used if preconstruction testing proves that they give satisfactory results or if acceptable service records are available.”
Shotcrete is a method of concrete placement, not a product. Therefore, concrete placed by the shotcrete method will exhibit the same characteristics as concrete placed by other methods. Mixture designs and proportions for shotcrete are modified for high-velocity placement. The high velocity provides some performance improvements over conventional cast-in-place methods when properly placed.
Shotcrete containing silica fume will tend to be more adhesive (sticking to substrate surfaces) and cohesive (adhesion to itself). This will result in quicker build-up (greater thicknesses per pass) and possibly reduced need for accelerators. Silica fume additions also result in dramatic reductions in rebound, particularly with the dry-mix process.
No. Shotcrete is a method of placing concrete. Therefore, any applicable certifications would apply to concrete regardless of the method of placement.
ACI 506.2, “Specification for Shotcrete,” recommends that a test panel be produced for every 50 yd3 (38 m3) of shotcrete placed or one per day, whichever is less. A minimum of three cores are to be cut from the test panel for compressive strength testing in accordance with ASTM C 42, “Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete.” Testing must be performed in accordance with ASTM C 1140, “Standard Practice for Preparing and Testing Specimens from Shotcrete Panels.” The average of the strength results from the cores must be at least 85% of the specified strength with no individual core less that 75% of the specified strength.
The application of shotcrete can be done successfully with either method. The dry-mix shotcrete process tends to be more favorable for lower volume placements. It is also a more flexible method, allowing for more frequent relocations of equipment. Equipment is more easily cleaned at the end of the placement. The nozzleman must exercise great care in adding the necessary amount of water while shooting.
The wet-mix shotcrete method is more favorable for larger volume placements. Rebound is substantially less than in the dry-mix shotcrete process. The nozzleman does not have to be concerned with controlling the water addition. This method is less efficient when there is a requirement for frequently starting and stopping placements. The wet shotcrete mixture has a limited “pot-life.”
Remember, shotcrete is not a special product. It is a method of placing concrete. All the recommended practices for concrete placed by any other method, such as curing and protection, also apply to shotcrete.
See ACI 506R, Sec. 1.7 (ACI document). Typical shrinkage varies in the range of 0.06 to 0.10 percent after 28 days drying. It is typically slightly higher than similar strength concrete, mostly due to less and/or smaller coarse aggregate in the shotcrete mix.
The ACI 506R-90 Guide to Shotcrete, Section 5.4.2 is the publication you are looking for. Amongst other things it states: “If the design allows, lapping of the reinforcing splices should be avoided. Lapped bars should be spaced apart at least three times the diameter of the largest bar at the splice”. If laps are not permitted by the design, then it is best to lap the bars one on top of the other (relative to the shooting orientation), rather than side-by-side, to facilitates proper encapsulation with shotcrete.
There are many textures that can be applied to the finish surface of the shotcrete. The least expensive is the natural nozzle finish which is rough and tends to absorb light as opposed to reflecting light and standing out. On the other extreme is carved and stained simulated rock as found in zoos and amusement parks. Stamping or rolling also creates a great finish. The broom finish is also very common. Color and textures are options and the owner or designer needs to decide on the value and effect he/she is looking for. Whatever finish, texture, pattern, color, stain, lump, bump, or crease that can be applied to concrete also applies here.