We have a unique situation where we need to apply shotcrete around a steel plate that is surrounding a beam supporting a floor. Can you provide any UL listings for applying shotcrete to a steel beam, column, or plate?

UL designs are typically for the hourly fire proofing ratings on structural steel members such as I-beams, wide flange beams, and vessel skirts. The beams and columns are tested for specific fireproofing products, beam sizes, and configurations. The thickness of the steel and other considerations factor in the evaluation; therefore, there is no blanket UL design number that you can use for steel plate. You can get guidance on the cover needed for different fire ratings in ACI 216.1-97/TMS 0216.1-97, “Standard Method for Determining Fire Resistance of Concrete and Masonry, Construction Assemblies.”
Remember that shotcrete is a process for applying concrete. You may also consider looking for a similar concrete UL design and submit it for consideration. Applying the shotcrete at a greater thickness to compensate for any variances should be proposed and presented to engineer or the owner for consideration.

I’m planning to add 6 in. (152 mm) of shotcrete to an existing 12 in. (305 mm) wall of a below-surface concrete tank to accommodate the removal of an existing middle support slab. The soil grade is approximately near the top of the existing tank wall. I’ve been told that since the existing wall is preloaded with soil, adding shotcrete will not increase the strength of the thickened wall and that the only way the wall will act as a whole (based on 18 in. [457 mm] thickness) is if the retained soil load is removed, then the shotcrete is added, and then soil is put back in place. Is this assessment accurate? Is there a way make this wall work as 18 in. (457 mm) without removing the existing soil?

Stress distribution from external loads through the tank wall with the shotcrete lining will depend on the geometry of the tank and the structural function of sections to be removed. A professional engineer experienced in shotcrete and concrete tank design should be consulted to ascertain the structural capacity of the completed wall. It would certainly be important to create a good bond plane by roughening the surface and removing any loose or fractured materials and using sufficient drilled dowels to make the existing 12 in. (305 mm) wall and new 6 in. (152 mm) overlay work well together. Also, it might help to specify the use of a shrinkage reducing admixture.

Is shotcrete a viable option to encase galvanized steel beams at a coal unloading facility to protect them from impact and abrasion? Will the galvanizing on the steel inhibit bonding?

Yes, shotcrete would be suitable for this application. A well-installed shotcrete lining will be durable and protect the steel from impact, abrasion, and from the acid attack that occurs from sulfur in the coal. Shotcrete is used to cover both the steel hopper walls and to encase the steel beams. Calcium aluminate cement is typically recommended for coal bunkers because of the mild acid condition that occurs that can attack the steel. Whether or not the steel beams are galvanized or not is irrelevant because the shotcrete will not bond well enough to any steel surface without welded studs and mesh to hold it in place. The beams will need to have studs welded and mesh installed around the beams for the shotcrete placement. With galvanized steel it is often necessary to grind off a spot of the galvanized coating at the spot of each stud weld location to properly weld the studs.

We plan to use fiber-reinforced (polypropylene fibers) shotcrete as a brown coat for stucco (three-coat stucco) over a concrete shear wall. Does a maximum thickness of 1.5 in. (38 mm) of shotcrete require any mechanical anchor/connection, or is the bonding strength of the shotcrete layer to the concrete shear wall substrate sufficient?

The addition of fiber will not increase the bond of shotcrete to the concrete shear wall. A 1.5 in. (38 mm) thick layer of properly designed and applied shotcrete should have adequate bond to a properly prepared concrete substrate without additional mechanical anchors. However, exposure conditions, geometry of the wall, shrinkage potential of the shotcrete mixture, application technique, and curing—as well as the age and quality of the shear wall concrete substrate—may affect the bond. These factors should be considered by an engineer experienced with shotcrete overlays in deciding whether additional anchoring is advisable.

We are building 6 and 8 in. (150 and 200 mm) thick cast-in-place concrete retaining walls with No. 4 (No. 13M) reinforcing bar at 18 in. (450 mm) on center each way. We would like to change to shotcrete as an alternate method of construction. Does the reinforcing bar design have to change for shotcrete application?

Shotcrete would be a great substitute for the retaining wall. Design-wise, the shotcrete is equivalent to concrete because shotcrete is really just a way of placing concrete.

The No. 4 (No. 13M) at 18 in. (450 mm) on-center spacing is not a problem. A No. 4 (No. 13M) bar can be easily encased by a qualified, experienced nozzlemen using either wet- or dry-mix shotcrete. In longer walls, or anywhere where reinforcing bars are lap spliced, the lap splice bars should be spaced apart. ACI 506R-05, “Guide to Shotcrete,” Section 5.4, provides some good guidance on optimizing reinforcing bar layouts for shotcreting. On the issue of lap splices, it says: “If the design allows, direct contact of the reinforcing splices should be avoided. Non-contact lapped bars should have a minimum spacing of at least three times the diameter of the largest bar at the splice.”

Thus, with No. 4 (No. 13M) bars in a lap splice, you should have the reinforcing bars spaced 1.5 in. (38 mm) apart at the splice to allow the shotcrete material to flow around the bar during shooting.

Chapter 8 of ACI 506R-05, “Guide to Shotcrete,” also provides a lot of guidance on proper shooting techniques for a variety of applications, including walls.

Is shotcrete used as a canal liner?

Shotcrete has been used for canal lining throughout the United States. The Bureau of Reclamation published a study on Canal Lining Test Sections constructed in the Bend, OR, area and studies the durability at 5 and 10 years. Shotcrete is a very viable means of placing canal linings. Basically, shotcrete is a method of placing concrete. Care should be taken to ensure that the mixture is designed to withstand the local environmental conditions, such as using air-entraining admixtures to ensure durability due to exposure to freezing and thawing. ACI 506R-05, “Guide to Shotcrete,” contains a lot of useful information in evaluating and using shotcrete in a variety of applications, including canal linings. If liquid-tightness and long-term durability of the canal lining are important, provisions of ACI 350/350R-06, “Code Requirements for Environmental Engineering Concrete Structures and Commentary,” should also be considered in the design of canal lining reinforcement, cover, and joints.

We are constructing a new custom residence on the Gulf Coast of Texas using a Monolite insulated concrete form (ICF) system. The ICF system is basically a “sandwich” system with an expanded polystyrene (EPS) panel with a wire cage and shotcrete on both sides. Because of the storm surge and high humidity of the region, we are looking for a mixture formula for a waterproof shotcrete for the exterior coating to help prevent moisture migration to the interior. What can you suggest?

The insulation itself should provide a vapor barrier. Various additives can be used with the shotcrete to improve its permeable properties, such as silica fume or a commercial waterproofing additive. It is also not uncommon to use a plaster coat over the shotcrete to provide improved water resistance and an architectural finish. The density and uniformity of the shotcrete can be influenced by the competency of the shotcrete applicator. It is always advisable to engage a competent and experienced shotcrete contractor to ensure the best possible results. You can search for a contractor with certified shotcrete nozzlemen from our Buyers Guide at shotcrete.org/products-services-information/buyers-guide/ or submit a bid request through our Online Bid Submittal Tool at www.shotcreteweb.wpengine.com/pages/secured/ProjectBidRequest.aspx.

We are considering the use of shotcrete to line a 3600 ft (1097 m) channel that is approximately 15 to 20 ft (4.5 to 6 m) wide. The purpose of the lining is to cap impacted sediments in the channel bottom. What is the suitability of shotcrete for this type of application, and can you provide a conceptual/budgetary estimate for the implementation of this approach?

Shotcrete is a method of placing concrete and therefore the material has the same basic characteristics of concrete. Shotcrete is often used for canal, channel, and ditch lining. It is important with shotcrete (concrete) that the subgrade the material is placed over be compacted and stable. The thickness, strength, and reinforcing needs to be designed and specified by a professional engineer familiar with this type of structure or pavement. For budget numbers, you should contact one of our contractor members, who can be found in the Buyers Guide on the Web site at shotcrete.org.

We are currently working on a tunnel that will cross through a drinking water protection zone in the alluvial aquifer. Do shotcrete technology and materials exist that can be used on groundwater-sensitive areas?

Shotcrete is the same as concrete when evaluated as a material and its exposure to potable water. In the U.S., many admixtures and cements for concrete have been tested and certified to meet the NSF 61 standards for materials exposed to potable water. In my experience, potable water stored in concrete tanks with direct exposure to the concrete (no coatings) has not exhibited any significant rise in alkalinity. Exposure of a tunnel in a groundwater aquifer would seem to have much less contact area per volume of water contained in the aquifer, such that any rise in alkalinity would be miniscule. Because concrete in the U.S. is universally accepted for the storage and transport of potable water, I’d assume that the use of shotcrete in your tunnel would be perfectly acceptable.

I would like advice about spraying shotcrete on the exterior walls of a house I am building. In constructing the exterior walls of the house, I plan to shoot approximately 0.75 in. (19 mm) on Day 1 and shoot 1.25 in. (31 mm) on Day 2 for 2 in. (50 mm) thick walls. I have hung 14-gauge wire mesh spaced at 1 in. (25 mm) over all the walls and am planning to use a 3000 psi (20.7 MPa) mixture. I am greatly concerned about cracking. Is my planned technique a good way to mitigate cracking or are there better approaches? Should I consider upping the strength of the concrete?

In structural applications, most of the impact force from nozzling shotcrete is directed toward compacting the shotcrete in place rather than against the formwork. This was the subject of a study conducted by Marc Jolin of Laval University, Quebec City, QC, Canada, and reported in the Fall 2008 issue of Shotcrete magazine. There is virtually no hydrostatic pressure on the forms from the application using the shotcrete process. A copy of this study can be viewed on the ASA WebIt is fine to place shotcrete in two layers on 2 consecutive days, although simply placing two layers on 2 consecutive days won’t prevent long-term drying shrinkage cracking. For the best bond, the surface of the shotcrete on Day 1 should be given a rough broom finish to provide a rough texture for the Day 2 shotcrete to bond to. On Day 2, before shooting, wet the surface of the Day 1 shotcrete to prevent a hot, dry surface from absorbing water from the fresh shotcrete. Please note that the surface needs to be dampened but allowed to dry to an SSD condition. A surface that is too wet can inhibit good bonding. It is essential to moist-cure the shotcrete as soon as it has finally set to help reduce early-age shrinkage cracking. On a hot, windy day, you may need to fog the surface soon after placement with a pressure washer using a fogging nozzle to reduce the rapid evaporation of water from the surface of the shotcrete. Wet curing with a wetted burlap overlay or drip system for at least 3 days (preferably 7 days) is recommended to help reduce the potential for longer-term drying shrinkage cracking. Using macrosynthetic fibers in the shotcrete mixture will also help reduce early-age shrinkage cracking. Because you are in Florida, unless you are shooting in the dead of winter, you may also want to consider using a concrete mixture with up to 20 to 25% fly ash. This will slow down the hydration of the cement and resultant set time to give you some more time to finish the surface and get proper curing started. Fly ash also helps reduce the concrete permeability and increases the long-term strength and is generally less expensive than portland cement. If you use a concrete mixture with silica fume (also called microsilica), it will increase the water demand of the mixture during hydration and has a greater tendency for early-age plastic shrinkage cracks. Thus, if you use silica fume, you will need to pay close attention to keep the surface wet through fogging and then wet curing as soon as it is practical. As previously mentioned, a 2 x 2 or 3 x 3 in. (50 x 50 or 75 x 75 mm) wire mesh would be preferred to reduce congestion of the reinforcement. Stay away from rolled mesh, as it is very difficult (even nearly impossible) to get to lay flat. Sheets of welded wire mesh are recommended. ASA recommends a minimum 28-day compressive strength for shotcrete of 4000 psi (27.6 MPa). A 3000 psi (20.7 MPa) mixture will have a higher water-cement ratio (w/c); therefore, there is more water in the mixture, which will significantly increase the potential for drying shrinkage cracking in the final surface. A 4000 psi (27.6 MPa) mixture is easily achieved with current portland cements and normal supplemental cementitious products such as fly ash. Finally, you mentioned that you will be shooting the surface of a house. You haven’t provided any details about what you are shooting the shotcrete on, but the substrate must be rigid enough to not vibrate when shotcrete hits the surface. If it is not rigid enough, the vibration of adjacent areas of freshly shot plastic shotcrete could cause cracking. This would be more of a problem in the Day 1 coat of shotcrete, but cracks that form in the Day 1 shotcrete would create a weaker section and increase the likelihood of mirrored cracking in the Day 2 layer. Again, please note: While it is appropriate to wet down the Day 1 shotcrete prior to application of the Day 2 shotcrete, it is important to let the wetted Day 1 shotcrete dry back to an SSD condition before application of the Day 2 shotcrete. If the Day 2 shotcrete is applied to a wet substrate (with liquid water on the surface), it will fail to meet the specified 150 psi (1 MPa) bond pulloff strength requirements for the project.