My name is Brian Lywandowsky and I work for a large concrete construction company in the San Francisco Bay Area. I’ve worked in the concrete pumping business since I was sixteen. Since then, I have owned a small pumping business
with my father and in 2007, I moved onto the company where I work today. I currently manage the Concrete Pumping and Lightweight Cellular Concrete divisions.
We are working on a large infrastructure project in New York state. We have access and approval issues for a new concrete mixture design. Our understanding is we can specify a Pre-Bagged or Pre-Packaged Shotcrete mix for a wet-mix application. Is this the correct terminology? Are there companies that produce this type of product?
We see both Pre-Bagged and Pre-Packaged terminology used. ASTM C1480 / C1480M – 07(2012) uses the rather unwieldy “Standard Specification for Packaged, Pre-Blended, Dry, Combined Materials for Use in Wet or Dry Shotcrete Application.” Most suppliers of packaged dry concrete materials for shotcrete have formulations designed for wet-mix applications. You can find our corporate members who supply pack-aged materials on our website in the Buyers Guide (shotcrete.org/BuyersGuide), select the Category, “Shotcrete Materials-Mixture Sales” and the Subcategory, “Wet Mix.”
would like to ask if there are any articles, references, etc, which reference procedures to determine the maturity of the concrete applied via shotcrete? Basically, how to generate the validation curves?
Shotcrete is a placement method for concrete. Thus, generating the maturity curves would be based on the concrete mixtures. There are several online resources about the maturity method. One that discusses production of the curves is from the Minnesota DOT and available in PDF format at www.dot.state.mn.us/materials/concretedocs/MaturityMethodProcedure.pdf.
Shotcrete Incorporated into ACI 318-19 Building Code
Since the shotcrete process originated well over 100 years ago, improvements in materials, equipment, and placement techniques have enabled it to become a well-proven method for structural concrete placement. The efficiency and flexibility of shotcrete have been used to great advantage in sizable structural projects, as the high-velocity impact inherent in the process provides the compaction needed to turn low-slump concrete into freestanding vertical and overhead placements with minimal formwork.
Performance of Synthetic Sheet Waterproofing Membranes Sprayed with Steel Fiber-Reinforced Shotcrete
The recent Position Statement #2, “Spraying Shotcrete on Synthetic Sheet Waterproofing Membranes,” published by the ASA Underground Committee, pointed out many aspects critical to successful performance and raised some potential issues affecting the placement.1 In the position statement, specific techniques are presented to prevent problems such as delamination, voids, or fallouts. In the discussion, the potential issue of steel fiber-reinforced shotcrete (FRS) causing damage and potentially puncturing the membrane was raised. From the experience of the committee and the available information, it was concluded that: • The forces acting on the fiber are not strong enough to push the fiber into the membrane; and • The fibers tend to orient parallel to the membrane on impact, thus reducing the risk of damage. In parallel, a research project on this subject had been undertaken at Université Laval’s Shotcrete Laboratory, with the results only recently available. This article presents the results of this investigation.2 It is intended to support ideas presented in the ASA position paper and to help in the decision-making process when dealing with waterproofing membranes and FRS in underground projects.
Fiber-Reinforced Shotcrete Applications and Testing Overview
The addition of fibers to concrete and mortars as reinforcement is not a new concept. The ancient Egyptians used straw to reinforce mud bricks for use in structures like the core walls of the pyramids. During the first century AD, the Romans incorporated horsehair fibers in the construction of structures like the Coliseum to help prevent drying shrinkage cracking of the concrete. In the modern era, the first scientific studies on the use of steel fibers to reinforce concrete date back to the 1960s and 1970s.1,2 The use of steel fiber-reinforced shotcrete (FRS) was first introduced in the 1970s.3 The first documented use of FRS was in 1973 by the U.S. Army Corps of Engineers in a tunnel adit project at the Ryrie Reservoir in Idaho. Soon thereafter it became well recognized that soil and rock excavations could effectively be stabilized with steel FRS and its use and acceptance increased globally. In the mid-1990s, the use of macrosynthetic fibers in shotcrete was developed and has increased with particular success in temporary support in underground mines where large deformation capacity is desired. Since the 1970s, thousands of projects have been successfully completed using fibers as reinforcement, including shotcrete, slabson-ground, composite steel decks, slabs-on-pile, and precast elements.
The Newly Launched ACI Shotcrete Inspector Certification Program
The Shotcrete Inspector Certification program began out of the need in the industry to have knowledgeable individuals inspecting shotcrete projects. Shotcrete contractors often find themselves having to educate project inspectors on the details needed for quality shotcrete placement. Shotcrete is a superior placement option in many cases, yet unfortunately, the expertise in evaluating the work is often non-existent. Many contractors and specifiers are faced with situations on jobsites where the lack of shotcrete-specific knowledge from the inspector has either limited the use of shotcrete or created potential litigious situations. The industry needs a knowledgeable on-site inspector, not necessarily an expert in contract documents or even a laboratory tester. As is the case with form-and-pour concrete, an inspector who has demonstrated basic shotcrete knowledge will
Improving Shotcrete Inspections
Shotcrete is a placement method for concrete. Even though the shotcrete process is over 100 years old, it constantly evolves and today, it is a modern, costeffective, and more sustainable method of concrete placement. Those of us who regularly shotcrete a variety of work will at times have inspections and therefore have to work with inspectors. Understanding the inspector’s role as a safeguard or agent for the owner is important. However, we often find dealing with inspectors can be a cumbersome part of our job. Knowing how to do something properly and being able to fully explain the means and methods of a specialized process (shotcrete) to someone who has little to no firsthand experience are two completely different animals