We have a client with a 6 1/2 in. (165 mm) thick reinforced concrete roof slab, the underside of which is in need of repair. There are places where the concrete has spalled, exposing reinforcing bar that has a 3/4 in. (19 mm) cover. There is efflorescence, and there is spalling that does not expose reinforcing bar and some at the steel supporting the concrete slab. In addition, there are hairline cracks and rust spots. Is shotcrete a feasible overhead repair for this situation? What holds the shotcrete to the slab? What is the minimum thickness of shotcrete we should specify? Should we specify shotcrete to be used only at the spalls, cracks, and efflorescence or the whole underside of the slab? Do you have a shotcrete repair procedure that we can put in our specification?

This type of repair is commonly done using the shotcrete process. The extent of the repair is an engineering issue, not a shotcrete issue—shotcrete can and is used for patches and overlays. The shotcrete will adhere to the properly prepared existing concrete. It is installed such that the weight of the plastic shotcrete does not;exceed the adhesion to the existing surfaces; if additional material is needed, it is added at the initial layer or layer set up. The minimum thickness is related to the material used for the repair and the need to establish cover on the existing or added reinforcing. Some repair mortars can be placed as thin as 1/2 in. (13 mm).
Please find a link to a paper on “Concrete Repair by Shotcrete Application”.
The success of the shotcrete repair will be highly dependent upon using a qualified shotcrete contractor and doing an excellent job of preparing the surfaces. Where the reinforcing is exposed, you should require that it be chipped out the entire perimeter allowing for a space of 3/4 in. (19 mm) behind the reinforcing bar so that the repair material can completely encase the reinforcing.

I have been asked to recommend repairs to a fire-damaged brick wall. The wall is 12 in. (30.5 mm) thick and 14 to 16 ft (4.25 to 4.9 m) high. The fire caused spalled brick—3/8 in. (10 mm) deep—and soft mortar joints. The damaged side of the wall is exposed to weather. I plan to recommend tuck-pointing the mortar joints but am wondering if shotcrete is appropriate to repair the spalled brick. The brick could be cut out and replaced, but shotcrete would seem to offer the advantage of repairing and reinforcing the brick wall.

Shotcrete would be an excellent process to repair or overlay your wall. You are correct in saying that it could not only repair but also reinforce and enhance the strength of the wall system. It is important to remove all deteriorated brick and sandblast or water-blast the surface if you are looking for a good bond between the shotcrete and the existing brick. Dowels epoxied or grouted into the existing brick are often used to mechanically tie the shotcrete overlay to the brick wall and also stabilize the new reinforcing steel in the shotcrete overlay.

Can shotcrete be used to repair a wall made of cement and fly ash? If so, should the wall be prepared for the shotcrete application?

Structurally sound concrete that contains up to 20% fly ash in the total cementitious materials should not present any problems for subsequent bonding of shotcrete. Concrete with fly ash contents up to 30% have been used in recent years without any reported problems with strength and bond. Although concrete mixtures with higher levels of fly ash (up to 55%) have been proposed, we don’t have direct experience with their bonding characteristics. We suspect it would be fine as long as the base concrete develops adequate compressive and tensile strength. This could be confirmed by a simple bond strength test of shotcrete on the concrete substrate in question.

The existing surface needs to be properly prepared, removing all soft or deteriorated material back to sound concrete. For extensive defects in the existing concrete, chipping hammers may be required. For removal of light surface carbonation or laitance, a strong, high-pressure water blast or sand/bead blasting may be adequate. Depending on the thickness of the shotcrete, reinforcing may be required in the overlay. Specific details of the repair are best developed by an engineer experienced in shotcrete repair.

We are studying a repair to an existing large-diameter corrugated metal pipe. The owner requires that the repair meet the fifth edition of the AASHTO LRFD Bridge Design Specifications with 2010 Interim Revisions. We want the owner to consider shotcrete as opposed to installing a new carrier pipe. I have pipe dimensions, depth, and so on, but need some help deciding if this is practical.

Shotcrete has been used in many cases to repair, rehabilitate, and strengthen pipes, culverts, and tunnels. It is not uncommon to use shotcrete to strengthen a culvert under a highway or roadway section. Shotcrete is a method of placing concrete at a high velocity. The shotcrete placed inside the existing pipe can be designed for strengths from 4000 to 10,000 psi (27.5 to 69 MPa), depending on the amount you are willing to spend on the shotcrete products. We cannot speak to the acceptance by the governing body, but it has been done successfully and often in the past. It is vitally important that the shotcrete contractor be competent and experienced in installing the lining. Your specification should require evidence of similar previously completed projects with current references.

We are rehabilitating a limestone-brick masonry storm sewer by lining it with shotcrete. The sewer is approximately 7 ft (2.1 m) tall with an arch ceiling and walls that are 8 ft (2.4 m) apart. The limestone surface is fairly rough, but the brick portions are not. While the existing structure shows no signs of needing to be reinforced for structural support, we are reinforcing to prolong the service life of the culvert. Is there a recommended minimum shotcrete thickness and reinforcement?

Shotcrete has been used to successfully rehabilitate sewers for over 50 years.

The thickness to be used is an engineering issue and beyond the scope of our association. We would recommend a 2 in. (50 mm) minimum thickness reinforced with either polypro­pylene fibers or a light-gauge welded wire reinforcement. The surfaces must be cleaned thoroughly to remove grease, oils, and other substances deleterious to good bond. Bonding to brick is not a problem.

Finish is another consideration. The added liner thickness will reduce the size of the culvert. If capacity is not an issue, it is recommended to leave the new shotcrete lining with a nozzle finish. If capacity might be a problem, then a float or trowel-smooth finish may be necessary.

We are removing up to 0.75 in. (19 mm) of the existing scaled concrete on a fire-damaged concrete wall. The architect has asked if shotcrete is applicable for a vertical 0.75 in. (19 mm) application. Also, the walls are circular and the working distance from the wall is no more than 36 in. (0.9 m). Is this enough room to apply shotcrete?

Yes, shotcrete can be applied in a 36 in. (0.9 m) area. Keep in mind, however, that it’s difficult to get as nice a gunning pattern as you would like when you are that close to the receiving surface. When you cannot back off from the wall, there is a tendency for a more irregular gunning surface, which would require more cutting and screeding to get an aesthetically pleasing result.

Our current project is a pier with severe corrosion of reinforcement and obvious spalls. The work will all be overhead with the surface 18 in. (457 mm) above the mean tide level and, for a variety of reasons, dry-mix is not an option. We are looking for a good, dense, wet-mix design for saltwater marine exposure. Compressive strengths need to be in the mid-range of 7000 to 8000 psi (48.3 to 55.2 MPa).

For a potentially suitable wet-mix shotcrete mixture design for marine structure repair, go to the ASA Web site (shotcrete.org). Click on Shotcrete magazine and search for “Shotcrete Classics: Deterioration and Rehabilitation of Berth Faces in Tidal Zones at the Port of Saint John.” This mixture design worked well for over 1.2 miles (2 km) of ship berth face repair over a 10-year period. Note: Because of high freezing-and-thawing exposure, the shotcrete was required to be air entrained. While the original mixture design called for 7% air content as shot, it was subsequently modified to require an air content of 7 to 10% as batched (at the point of discharge into the shotcrete pump) and an air content of 5 ± 1.5% as shot (into an air pressure meter base). Such shotcrete has provided good freezing-and-thawing resistance. You should be aware that your local materials (coarse and fine aggregates and cement) may have different properties in the concrete mixture, however, as compared to the mixture discussed in the article. It is recommended that a local engineer, testing laboratory, or concrete supplier be retained to develop a concrete mixture using local materials that meets the performance requirements of the mixture design mentioned in the article. Also, test panels constructed with the mixture, nozzlemen, and equipment to be used in the shotcreting are highly recommended to verify the strength performance of the shotcrete.

We are repairing a culvert in Dallas, TX. The concrete wall of the structure is pre­maturely disintegrating. We are considering a process to temporarily support the ceiling, remove the wall, place a form on one side, and use shotcrete to replace the wall. Does this sound like a reasonable use for shotcrete? What kind of specifications should be used?

Yes, this sounds like a good use of the shotcrete process. Your sequence sounds like a good plan. A sample Structural Shotcrete Specification is available from the Shotcrete magazine archive on the ASA Web site (www.shotcreteweb.wpengine.com/).