The ACI 506R-90 Guide to Shotcrete, Section 5.4.2 is the publication you are looking for. Amongst other things it states: “If the design allows, lapping of the reinforcing splices should be avoided. Lapped bars should be spaced apart at least three times the diameter of the largest bar at the splice”. If laps are not permitted by the design, then it is best to lap the bars one on top of the other (relative to the shooting orientation), rather than side-by-side, to facilitates proper encapsulation with shotcrete.
Is it possible to put a texture on the application side of a shotcrete wall? I understand that I can shoot against a form, but what about the side that gets screeded?
There are many textures that can be applied to the finish surface of the shotcrete. The least expensive is the natural nozzle finish which is rough and tends to absorb light as opposed to reflecting light and standing out. On the other extreme is carved and stained simulated rock as found in zoos and amusement parks. Stamping or rolling also creates a great finish. The broom finish is also very common. Color and textures are options and the owner or designer needs to decide on the value and effect he/she is looking for. Whatever finish, texture, pattern, color, stain, lump, bump, or crease that can be applied to concrete also applies here.
When used on walls, can shotcrete be of equivalent strength as poured concrete?
Basically, shotcrete is a method of placing concrete that does not require forms. As a matter of fact, shotcrete requires the concrete mix to be proper every time. With formed concrete walls, the ready mixed concrete going in can be substandard and still appear to be okay. Shotcrete also provides a more dense concrete less susceptible to water penetration. The most glaring difference will be the quality of the materials used. Most poured walls are designed for a compressive strength of 2500 to 3000 psi. Typically they are placed with a water/cementitious material ratio of 0.60 and higher. Curing is almost unknown in the poured wall sector. Protection only occurs in the coldest weather. By the very nature of the process, shotcrete will have a much lower w/cm ratio. This will produce a wall with higher compressive strength and have the attributes of lower w/cm ratio concrete, i.e. reduced permeability, less shrinkage, increased durability. With proper curing and protection, the shotcrete mixture will produce significantly better long-term performance. The shotcrete process should allow for easier addition of insulation to the walls as well. This is especially important if the basement is to be used for more than just storage.
What is the minimum thickness that shotcrete can be applied? We are currently using shotcrete on a restoration project and have a concern at the corner locations are returning to tight recessed steel framed windows. There is an exterior wood molding approximately 1 inch from the tight corner that needs to be preserved. Do you have any suggestions as to how we can address this? Do we need to provide caulking between the wood molding and the shotcrete?
Thicknesses depend on the structure and surface (surface prep is the key to proper bonding of shotcrete) the shotcrete is being applied to. Depending on the application 1/4 flash coat to 1 inch thickness can be the minimum. As far as shotcrete up to the steel windows, you have to consider that cracking may occur off of each corner. This can be minimized by adding additional reinforcement at those locations. It is common to tool in a joint around the windows so that we could apply a caulk later. The caulking will assure a waterproof seal between the window and the concrete during temperature changes that may create some expansion and contraction. You do not have to depend on the trim work to create the weather and water tight seal the architect requires.
Is there any reference that differentiates between temporary shotcrete work and permanent shotcrete work, as far as inspection/testing requirements?
Temporary lagging of shotcrete must meet some standard as it is the shoring holding back the earth. If reinforcing is used in the design of the temporary shoring it must be fully encapsulated to provide the design strength of the lagging as specified in the design. A temporary structure may have a low safety factor but the strength of the rebar and shotcrete must meet the design specifications. Many times it is more important to do good shotcrete for the temporary shoring just because it has a lower factor of safety and therefore less allowance for poor construction practices.
My company manufactures a polyester geogrid that is coated with PVC. We sell these grids into underground mines, as well as many aboveground civil engineering products. We have a new grid that may work very well as an auxiliary reinforcement for shotcrete-type products. Can you tell me what the pH is for these products? The type that we would be exposed to is used in underground mines to reinforce the mine roofs.
The most commonly used estimates for pH of concrete are 13 for plastic (fresh) concrete and about 10 for hardened concrete with a little age to it.
Can shotcrete be painted like other concrete? Can an elastomeric paint, 100% acrylic latex house paint or solvent acrylic be used? I have a customer who wants to paint a tank which uses shotcrete. With normal concrete the surface must be 30 days or older, pH is approximately 7-8 and moisture content is low, remove efflorescence or laitance, etc., then it is ready to paint or coat. Do the same restrictions for shotcrete?
Shotcrete is pneumatically applied concrete. All surface prep work for concrete will be the same for shotcrete applications. Before a recommendation can be made, is this tank going to be painted on the outside or the inside? Second if this tank is to be painted on the inside, what will be put in it? The environment in which this tank is located also plays a key part in determining what type of paint or coating application. If this a tank that has been in operation, what was stored in it? Testing of the concrete in this case is important, in order to determine what method of surface prep would be needed to achieve a good coating bond.
I have come across the term “spacing factor” and have been unable to find a definition. What is a spacing factor?
The term “spacing factor” refers to the distance between air bubbles in hardened concrete. All concrete has some air bubbles, usually in the range of 1 or 2%, referred to as “entrapped air”. These bubbles provide no freeze/thaw protection. Where freeze/thaw protection is desired, air bubbles are intentionally introduced, or entrained, into the plastic concrete mixture. These microscopic bubbles protect the mortar portion of the concrete by providing space for water in the concrete to expand during the freezing process. If these bubbles were not available for this purpose, the expansion of the water would damage the mortar. An important characteristic of a good air-void system is the spacing factor. Bubbles need to be in close proximity so the water migrating through the concrete does not have to travel far to find a bubble in which the water can expand. Ideally the spacing factor will be less than 0.008 in. This analysis is performed on hardened concrete by a trained petrographer using test method ASTM C 457. There usually is some slight variance between petrographers evaluating the same concrete sample.
I know air entrainment is required in concrete exposed to cycles of freezing and thawing while saturated. However, the shotcrete I am going to be applying on a project in Chicago is on a vertical surface where the water will essentially run off the surface. Do I still need to worry about air content?
You are correct in stating that entrained air is necessary in concrete that is exposed to freezing and thawing while critically saturated. Even vertical walls can get critically saturated in places. Because you are working in a part of the country that experiences significant freezing and thawing, it is imperative that you maintain sufficient air content in the shotcrete. Remember, you are going to lose some air content in the placement process so the air content of the shotcrete mixture going into your pump must be higher than the desired in-place air content. It is a wise idea to do some testing in advance of the actual shotcreting to determine how much air content you will lose.
Our firm has no experience designing for shotcrete applications. We have been investigating the process and would like to know what we should be looking for as the shotcrete is placed. Are there special features or problems in shotcreting?
Proper placement is the most important element in achieving good shotcrete results. Most defects that occur in shotcrete are due to poor placement. Shotcrete success depends largely on the skill and actions of the nozzleman. The nozzleman’s goal is to achieve adequate compaction and good encasement of the reinforcement (if present) with no entrapped rebound or hardened overspray. For this reason, it is important to require that the nozzleman be ACI certified for the application. There are specific certifications for both wet and dry processes as well as vertical and overhead applications. If the nozzleman is certified, the probability that you will get the desired results is significantly increased. For more information on certification, visit the ASA website, shotcrete.org, and click on Certification.