About ASA Committees

Committee meetings are open to the public and ASA welcomes and encourages the participation of all interested parties in the shotcrete industry.


Board of Directors

The Board of Directors shall have supervision, control, and direction of the affairs of the Association, shall determine its policies within the limits of the ASA bylaws, shall actively pursue its purpose and shall oversee the disbursement of its funds.

ASA Officers

President
Bill Geers
Consultant


Vice President
Jason Myers
Dees Hennessey Inc


Secretary
Kevin Robertson
Sika – STM (USA)


Treasurer
Bruce Russell
CROM


Past President
Oscar Duckworth
Applied Shotcrete

ASA Directors

Jamie Curtis (2028)
CCP Shotcrete + Pumping


Michael Klemp (2028)
Thorcon Shotcrete & Shoring


Derek Pay (2028)
Oceanside Construction


Jake Wiseman (2027)
Wiseman Shotcrete


Randle Emmrich (2027)
Coastal Gunite Construction Company


Christoph Goss (2027)
Schnabel Engineering


Juanjose Armenta-Aguirre (2026)
Gunite Supply & Equipment Co


Mark Bradford (2026)
Spohn Ranch Skateparks


Justin Shook (2026)
Baystate Shotcrete LLC


Contractor Qualification Committee

Mission Statement: To develop and maintain ASA’s Contractor Qualification Program.

Marcus von der Hofen, Chair
Coastal Gunite Construction Co.


Education & Safety Committee

Mission Statement: To gather and communicate safe practices and quality placement standards in the shotcrete industry.

Derek Pay, Chair
Oceanside Construction


Membership & Marketing Committee

Mission Statement: To broaden and engage the ASA membership base while supporting ASA committees in their marketing efforts.

Jason Myers, Chair
Dees-Hennessey, Inc.


Pool & Recreational Shotcrete Committee

Mission Statement: To educate and promote the proper use and application of shotcrete to the swimming pool and recreational shotcrete industry.

Ryan Oakes, Chair
Revolution Gunite


Technical Committee

Mission Statement: To oversee the technical activities of ASA, including the review and evaluation of technical presentations, publications, handouts, etc., and the appraisal of research projects under consideration for ASA sponsorship.

Lihe (John) Zhang, Chair
LZhang Consulting & Testing Ltd.


Underground Committee

Mission Statement: To educate and promote the use and proper application of shotcrete to the underground construction and mining industries.

Christoph Goss, Chair
Schnabel Engineering

I would like to know if there is any parameter for test panel dimensions and inclination of proposed shotcrete surfaces represented by the test panels. I also would like to know if there is any specification for frequency of making test panels during the shotcrete project duration. In general, what is the specified type of panels and number of them to be specified and to what time frequency should a contractor assemble them for quality control purposes?

ACI 506.2-13, “Specification for Shotcrete,” is an excellent resource for answering your questions. ACI 506.2 addresses both preconstruction panels and test panels used for material quality control during construction. ACI 506.2, Section 1.5.1.4, requires that when preconstruction panels are required, the Contractor shall “Construct test panels for each proposed shotcrete mixture, each anticipated orientation, and each proposed nozzleman.” Preconstruction test panels vary in size to adequately represent the embedded reinforcement and section thicknesses in the work to be done.

Test panels shot during construction for evaluation of material properties are covered in ACI 506.2, Section 1.6.3.1, which states: “Construct a test panel for each mixture, each nozzleman, and each work day or for every 50 yd3 (38 m3) placed—whichever results in the most panels. The face dimensions of a test panel shall be a minimum of 16 x 16 in. (406 x 406 mm) with a minimum depth of 5 in. (127 mm). For toughness testing in accordance with ASTM C1550, the face dimension shall be 30.5 in. (775 mm) in diameter and 3 in. (76 mm) thick. Shoot test panels in a vertical orientation only unless otherwise specified.”

ACI 506.2-13 has extensive provisions for the submittals, testing, materials, and execution of shotcrete work by a shotcrete contractor. It cites many of the ASTM testing standards appropriate for shotcrete construction. We recommend you review the document in its entirety to become familiar with current industry standards.

Is there a reference where I can obtain some guide regarding the tensile strength of fiber-reinforced shotcrete (steel and poly)?

ACI 506.1R-08, “Guide to Fiber-Reinforced Shotcrete,” is a good reference for general use of fibers in shotcrete. If looking at underground applications for shotcrete, ACI 506.5R-09, “Guide to Specifying Underground Shotcrete,” will also offer guidance. The ACI 506 documents are available in hard copy format on our bookstore website with ASA member discounts (shotcrete.org).
Because shotcrete is a method for placing concrete, many, if not most, of the properties of fiber-reinforced concrete, as found in ACI 544 committee documents, are applicable to shotcrete.

I have a very small job to do that would normally be handled by a gunite or sprayed-on application. I need to form the inside of a concrete box into a cylindrical shape. I would like to get a few hints or suggestions on how I might accomplish the “gunite” solution using my hands/tools only. Does this require a special mix of the mortar mixture?

Shotcrete is concrete placed at high velocity to achieve compaction. It is dependent on the projection of material with air velocity of 60 to 80 mph (97 to 129 km/h) from the nozzle to consolidate the concrete material in place. It cannot be hand-applied. You may consider hand-applied pre-packaged mortar mixtures to achieve your results, although strength and durability may be less than a similar section with shotcrete because the hand-applied material is not fully compacted. Another alternative is to create an inner cylinder and cast concrete in the space between the box and the form. The concrete could then be vibrated for consolidation.

What is the standard materials delivery rate velocity for shotcrete applications?

Recent research into velocity of the material stream shot from the nozzle is approximately 60 to 80 mph (97 to 129 km/h) in the middle of the stream. Outer portions of the stream are slowed and show speeds of about 45 mph (72 km/h). Here’s a link to the Technical Tip published in the Fall 2013 Shotcrete magazine that provides more complete documentation of the research: shotcrete.org/wp-content/uploads/2020/01/2013Fal_TechnicalTip.pd.

I’ve been testing shotcrete cores for compression strength according to ACI 506, ASTM C1604, and ASTM C1385. The only thing that we have been doing out of specifications is the panel. Our panels are 18 x 18 in. (457 x 457 mm). We have been coring at the center of the panel 2 days after it has been cast. We test these cores at 7 and 28 days, and the strength of cores reflects passing at 7 days but failing at 28 days. Can you please tell me what could be the cause of this?

ASTM C1140/C1140M-11, “Standard Practice for Preparing and Testing Specimens from Shotcrete Test Panels,” is the appropriate ASTM standard for producing and coring test panels. ASTM C1140 specifies panel size as a minimum of 24 x 24 in. (610 x 610 mm) with a minimum 3.5 in. (89 mm) depth. Without more information on the materials used in the shotcrete and the type of shotcrete, it is impossible to identify what may be causing the lower compressive strength tests.
The compressive strength should increase between 7 and 28 days on a curve equivalent to cast concrete. Strength degradation between 7 and 28 days may be a result of poor shotcrete application or problems with coring or curing of the samples.

We have a school project in California. It is for a structure with shotcrete walls and a shotcrete dome roof shot with an inflatable form. There is disagreement on the nozzlemen qualification panels. One group says that a panel should be shot for each nozzleman for each position (three panels: one vertical, and two for different slopes of the dome) in a single layer with the most congested reinforcing bar in any single layer to simulate job conditions. A second group maintains that the same three panels should be shot, but they should be built up over a period of 6 days in gradual layers to represent the layering of the actual shooting. I think that the first group is correct and complies with the intent of ACI 506. Shooting one-layer panels with the most congested reinforcing bar to be placed in any one layer would best simulate the job placement conditions. I don’t see any added advantage in shooting qualification panels over a period of days in layers and seems to be reading too much into “simulating” jobsite conditions.

In construction of shotcrete dome roofs with inflatable forms, the structural thickness of the dome is built out in layers to prevent overloading the support offered by the inflatable form and foam. Thus, your nozzleman qualification panels should be representative of the dome construction methods. This would include shooting orientation (vertical and varying slopes), shooting procedures (layers), and with the most congested reinforcing. When shotcrete is applied in layers, all you need to do is wait for the first layer to stiffen sufficiently (usually called initial set), before applying the next layer. It is not necessary to wait for days before applying the next lift.

Is it possible to apply shotcrete on glass? Can shotcrete or concrete bond with glass? If it is an issue due to the smooth surface properties of glass, will sandblasting help? We have made test holes and it is adhered very well, except where moisture penetration through the parapet has compromised adhesion. This is installed with five layers approximately 1 in. (25 mm) thick. We are considering leaving the material in place, patching as required, and removing the existing nonpermeable paints (which are peeling). Our thought is to coat the surface with a variegated colored stain, allowing for permeability of vapor. Can the material be patched as necessary? What is the recommended finish? Do we need to be concerned that the material could permit water penetration? Are there certified contractors in the Cleveland, OH, area?

We are not aware of any specific applications of shotcrete to glass. The glass would have to be tough or strong enough to withstand the sprayed application. We have seen shotcrete stick to smooth surfaces like glass and glossy paint, but have not seen any data on the bond. In general terms, better bond is achieved with roughened surfaces so sandblasting the glass would likely improve the bond.

We are looking at constructing climbing boulders made with shotcrete and using a polystyrene core. Does the polystyrene need to be covered with a protective membrane to protect it during the spraying process? Also, could the polystyrene contribute to the structural integrity of the boulders, or should it just be used as a void-forming material?

Polystyrene is available in various densities and the denser the product, the less likely that the shotcrete process will cause any damage to it. The question of the structural value of the polystyrene needs to be addressed by a competent structural engineer. It is not something that we, as a shotcrete association, feel qualified to comment on.