GeneralQ What is the best way to check the sand-to-cement ratio in gunite batch trucks? Is it normal (common) to get up to 10% air straight from the mixing auger? I had a gunite truck fill a 5 gal. (19 L) bucket with mixed material (sand and cement) then put it in my lab mixer and wetted it up to a 3 in. (75 mm) slump and ran a test for air, unit weight, and cast a set of cylinders. I am trying to figure out the sand-to-cement ratio, but I don’t have a cement diverter to run a real-time sand-to-cement ratio test, so I am testing dispensed material to see if it makes 70% strength in 7 days, which indicates a good mixture. Are there any other ways of checking sand-to-cement proportions? I tested the mixed material in a lab about 5 minutes after it was dispensed.
By “gunite batch truck” we assume you are referring to a volumetric mixer supplying material for a dry-mix shotcrete operation. Gunite is the original tradename for what we now call dry-mix shotcrete. Here’s the description from an ACI Materials Journal (January-February 1991 issue) article about the calibration of volumetric mixers:
“To insure production of quality concrete, each volumetric-measuring unit must be calibrated for each respective concrete ingredient, following the manufacturer’s recommendations and ASTM C 685. These ingredients must be the same as those to be used in actual concrete production. The measuring devices for aggregates, cement, and dry admixtures are calibrated by weighing the discharged ingredient. Devices for water, latex modifier (if required), and liquid admixtures such as air-entraining and water-reducing admixtures generally are calibrated by weighing or measuring the volume of the discharged ingredient. The objective of calibration is to coordinate the discharge of all concrete ingredients to produce the proper mixture.”
ASTM C685/C685M states, “The proportioning and indicating devices shall be individually checked by following the equipment manufacturer’s recommendations as related to each individual concrete batching and mixing unit. Adequate standard volume measures, scales, and weights shall be made available for the checking accuracy of the proportioning mechanism.” Thus, you need to check with your equipment supplier for their recommended procedures to verify batching. Because concrete mixtures always are based on weight of ingredients there you will need to weigh a given volume to confirm the batching is accurate.
The air content test is a measure of total air so includes both entrapped and entrained air. Ten percent is definitely high. The 10% air is likely not representative of the in-place shotcrete. It may have been an issue with the lab mixer introducing more entrapped air for some reason. Estimating the air content from the unit weight test requires a good value for the theoretical unit weight. I’m not sure if you have that with the volumetric batching. You should run the air meter test (ASTM C231/C231M) to measure the air content to get a more accurate assessment.
Regarding the verification of mixture proportions, this is from ASTM C685/C685M:
“7.5 Proportioning Check—Whenever the sources or characteristics of the ingredients are changed, or the characteristics of the mixture are noted to have changed, the purchaser is permitted to require a check of the fine aggregate content and the coarse aggregate content by use of the washout test. Essentially, in the washout test, 1 ft3 [0.03 m3] of concrete is washed through a No. 4 [4.75-mm] sieve and through a No. 100 [150-µm] sieve; that retained on the No. 4 sieve is normally considered coarse aggregate whereas that passing the No. 4 and retained on the No. 100 sieve is considered fine aggregate. Corrections to the quantity of aggregates (per cubic foot or cubic meter of concrete) shall be made if the original sieve analysis of each aggregate is available.”
Because you are only interested in the sand and cement, you can simply weigh the sample of concrete, then wash out all the cement, and then weigh the remaining sand. You would need to bring the sand to roughly the same moisture content as the sand in the truck, so you aren’t including in the weight of excess water in the sand. You should note that with shotcrete impact during placement we will generally lose 50% of the air content, so your final in-place air should be around 5%. That is a reasonable value for good freezing-and-thawing durability.